Adsorption of Cadmium from Aqueous Solution by Biomass: Comparison of Solid Pineapple Waste, Sugarcane Bagasse and Activated Carbon

2013 ◽  
Vol 832 ◽  
pp. 810-815 ◽  
Author(s):  
M.S. Rosmi ◽  
S. Azhari ◽  
R. Ahmad

The use of low-cost adsorbent derived from agricultural waste has been investigated for the removal of Cd (II) from aqueous solution. This research reports the feasibility of using solid pineapple waste (SPW), sugarcane bagasse (SCB) and activated carbon (AC) derived from palm kernel for the removal of Cd (II) under different experimental conditions. Batch experiments were carried out at various pH (3-12), adsorbent dosage (0.01-2 g) and contact time (15-150 min). The maximum Cd (II) removal was shown by SPW (90%) followed by SCB (55%) and AC (30%) at pH 7 with a contact time of 120 min, adsorbent dosage of 1.0 g and at 1.0 ppm of the initial concentration of Cd (II) solution. The kinetics study shows that the adsorption process fitted the pseudo-second-order-model. The experimental data was analysed by both Freundlich and Langmuir isotherm models. It was found that the Langmuir model appears to well fit the isotherm. The Langmuir maximum adsorption capacity calculated from Langmuir for SPW, SBC and AC were 0.3332 mg/g, 0.1865 mg/g and 0.1576 mg/g respectively. The order of Cd (II) removal by the adsorbents was SPW>SCB>AC. Thus, SPW may be an alternative adsorbent for the removal of Cd (II) ions form aqueous solution. The characterization of the SPW, SCB and AC were also carried out by using Scanning Electron Microscopy (SEM) and Nitrogen Gas Adsorption Single Point Surface Area Analyzer (BET).

2019 ◽  
Author(s):  
Amit Nilabh

In this study we synthesized activated carbon (AC) sourced from peanut shell, an agricultural waste, for the adsorption of methyl blue from its aqueous solution. AC was produced via chemical activation method and was characterized using various tools like XRD, FESEM and Raman spectroscopy. Adsorption experiments were carried in different batches with varying initial concentration, adsorbent dose, contact time, pH and temperature. The optimized parameters for adsorption were found to be that of initial dye concentration of 150 mg/L, adsorbent dose of 120 mg/L, temperature equals to 50C, contact time of 50 minutes and pH equals to 8. Adsorption data were used to figure out isotherm models, kinetics as well as thermodynamics of the process. It was concluded that maximum adsorption capacity is coming to be 714.28 mg/g, and the adsorption is favoring the Tempkin isotherm model. Also it was observed that the process is endothermic and spontaneous in nature.


Author(s):  
K Arun Kumar ◽  
Sandeep. S,

This research work goals at searching the effectiveness of Malachite Green dye removal using banana stem, an agricultural waste as an activated carbon. The banana stem activated carbon was made ready in the laboratory by carbonization followed by activation. Adsorption studies were carried out to check the effect of various experimental conditions like different pH values, varying contact time, initial concentration of dye and changing banana stem carbon dosage on the removal of Malachite Green dye from aqueous solution at constant Temperature and agitation speed. The equilibrium experimental data were used for applicability of Langmuir and Freundlich isotherm models and the kinetic models. Batch test showed that maximum of 99% of dye was removed when the dye concentration was 2 mg/L, at an adsorbent dose of 0.75 gm/L at dye pH 8 in 45 minutes. From the obtained results it is validated that the equilibrium data’s favorable for both Freundlich and Langmuir isotherms. Maximum adsorption capacity of banana stem carbon on malachite green dye was found to be 8.29 mg/g. It was prevailing that the adsorption process followed the pseudo-second-order rate kinetics. It was observed that intra particle diffusion is not the only rate-limiting step in this adsorption system but also regression results indicate that the linear regression model gives the best results. The above observations recommend that Banana stem carbon can be competently implemented for removal of malachite green dye from aqueous solution in the adsorption treatment processes.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1211
Author(s):  
Sultan Alam ◽  
Muhammad Sufaid Khan ◽  
Ali Umar ◽  
Rozina Khattak ◽  
Najeeb ur Rahman ◽  
...  

Pd–Ni nanoparticles supported on activated carbon (Pd–Ni/AC) were prepared using a phase transfer method. The purpose of synthesizing ternary composites was to enhance the surface area of synthesized Pd–Ni nanoparticles, as they have a low surface area. The resulting composite was characterized by scanning electronic microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX) for investigating its surface morphology, particle size, percentage of crystallinity and elemental composition, respectively. The XRD data and EDX analysis revealed the presence of Pd–Ni alloys impregnated on the AC. Pd–Ni/AC was used as an adsorbent for the removal of the azo dye basic blue 3 from an aqueous medium. Kinetic and isotherm models were used to calculate the adsorption parameters. The most suitable kinetic model amongst the applied models was the pseudo-second-order model, confirming the chemisorption characteristics of the process, and the most suitable isotherm model was the Langmuir model, with a maximum adsorption capacity of 333 mg/g at 333 K. Different experimental parameters, such as the adsorbent dosage, pH, temperature and contact time, were optimized. The optimum parameters reached were: a pH of 12, temperature of 333 K, adsorbent dosage of 0.01 g and optimum contact time of 30 min. Moreover, the thermodynamics parameters of adsorption, such as Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°), showed the adsorption processes being exothermic with values of ΔH° equal to −6.206 kJ/mol and being spontaneous with ΔG° values of −13.297, −13.780 and −14.264 kJ/mol, respectively at 293, 313 and 333 K. An increase in entropy change (ΔS°) with a value of 0.0242 kJ/mol K, indicated the enhanced disorder at a solid–solution interface during the adsorption process. Recycling the adsorbent for six cycles with sodium hydroxide and ethanol showed a decline in the efficiency of the selected azo dye basic blue 3 up to 79%. The prepared ternary composite was found effective in the removal of the selected dye. The removal of other pollutants represents one of the possible future uses of the prepared adsorbent, but further experiments are required.


2017 ◽  
Vol 13 (27) ◽  
pp. 425
Author(s):  
Azeh Yakubu ◽  
Gabriel Ademola Olatunji ◽  
Folahan Amoo Adekola

This investigation was conducted to evaluate the adsorption capacity of nanoparticles of cellulose origin. Nanoparticles were synthesized by acid hydrolysis of microcrystalline cellulose/cellulose acetate using 64% H3PO4 and characterized using FTIR, XRD, TGA-DTGA, BET and SEM analysis. Adsorption kinetics of Pb (II) ions in aqueous solution was investigated and the effect of initial concentration, pH, time, adsorbent dosage and solution temperature. The results showed that adsorption increased with increasing concentration with removal efficiencies of 60% and 92.99% for Azeh2 and Azeh10 respectively for initial lead concentration of 3 mg/g. The effects of contact time showed that adsorption maximum was attained within 24h of contact time. The maximum adsorption capacity and removal efficiency were achieved at pH6. Small dose of adsorbent had better performance. The kinetics of adsorption was best described by the pseudo-second-Order model while the adsorption mechanism was chemisorption and pore diffusion based on intra-particle diffusion model. The isotherm model was Freundlich. Though, all tested isotherm models relatively showed good correlation coefficients ranging from 0.969-1.000. The adsorption process was exothermic for Azeh-TDI, with a negative value of -12.812 X 103 KJ/mol. This indicates that the adsorption process for Pb by Azeh-TDI was spontaneous. Adsorption by Azeh2 was endothermic in nature.


2016 ◽  
Vol 18 (2) ◽  
pp. 402-415 ◽  

<div> <p>Agriculture wastes like sugarcane bagasse are available in large quantities in Egypt. Various adsorbents from natural materials, industrial waste materials, agricultural by-products, and biomass based activated carbon can be used in the removal of various dyes. Raw Bagasse pith (RBP) was used to prepare activated carbon (AC) using phosphoric acid (H<sub>3</sub>PO<sub>4</sub>) as a chemical activating agent. C The raw BP and the synthesized adsorbent were characterized by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscope (SEM). The effectiveness of AC prepared in adsorption of methylene blue (MB) has been studied as a function of adsorbent type, initial dye concentration and contact time. The effects of the initial dye concentration and contact time were evaluated. Adsorption isotherm models - Langmuir, Freundlich and Temkin were used to simulate the equilibrium data. Langmuir equation was found to have the highest value of R<sup>2</sup> compared with other models. Furthermore, it was found that sugarcane bagasse have a high adsorptive capacity towards MB.</p> </div> <p>&nbsp;</p>


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5672 ◽  
Author(s):  
Ghulam Mustafa Shah ◽  
Muhammad Nasir ◽  
Muhammad Imran ◽  
Hafiz Faiq Bakhat ◽  
Faiz Rabbani ◽  
...  

Lead (Pb) is a ubiquitous pollutant which poses serious threats to plants, animals and humans once entered into the food chain via contaminated industrial effluents on their discharge into the surface of water bodies and/or geological materials. This study aimed to examine and compare the biosorption potential of natural sugarcane bagasse (NB), pyrolysed sugarcane bagasse (PB) and acid assisted pyrolysed sugarcane bagasse (APB) for the removal of Pb from contaminated water. To explore this objective, a series of batch experiments were conducted at various adsorbent mass (0.25, 0.5, 0.75, 1.0 g per 100 ml contaminated water), initial Pb concentration (7, 15, 30, 60 and 120 ppm), and contact time (7, 15, 30, 60 and 120 min). Results revealed that all the tested bio-sorbents have potential to adsorb and remove Pb ions from the contaminated water. In this regard, APB proved more effective since it removed 98% of Pb from aqueous solution at initial Pb concentration of 7 ppm and mass of 0.25 g per 100 ml of aqueous solution. The respective values in case of NB and PB were 90 and 95%. For a given adsorbent type, Pb adsorption decreased by increasing the mass from 0.25 to 1.0 g per 100 ml of aqueous solution. However, the greatest Pb removal occurred at adsorbent mass of 1.0 g per 100 ml of aqueous solution. Initial Pb concentration had a great impact on Pb adsorption and removal by adsorbent. The former increased and the latter decreased with the increase in initial Pb concentration from seven to 120 ppm. At seven ppm Pb concentration, maximum Pb removal took place irrespective to the adsorbent type. Out of the total Pb adsorption and removal, maximum contribution occurred within 15 min of contact time between the adsorbate and adsorbent, which slightly increased till 30 min, thereafter, it reached to equilibrium. Application of equilibrium isotherm models revealed that our results were better fitted with Freundlich adsorption isotherm model. Overall, and for the reasons detailed above, it is concluded that sugarcane bagasse has capabilities to adsorb and remove Pb ions from contaminated water. Its bio-sorption potential was considerably increased after pyrolysis and acid treatment.


Author(s):  
Davoud Balarak ◽  
Yousef Mahdavi ◽  
Ali Joghatayi

Presence of Fluoride in water is safe and effective when used as directed, but it can be harmful at high doses. In the present paper SiO2 nanoparticles as a adsorbent is used for removal of fluoride from aqueous solution. The effect of various operating parameters such as initial concentration of F-, Contact time, adsorbent dosage and pH were investigated. Equilibrium isotherms were used to identify the possible mechanism of the adsorption process. Maximum adsorption capacity of the SiO2 nanoparticles was 49.95 mg/g at PH=6, contact time 20 min, initial concentration of 25 mg/L, and 25±2 ◦C temperatures, when 99.4% of Fwere removed. The adsorption equilibriums were analyzed by Langmuir and Freundlich isotherm models. It was found that the data fitted to Langmuir (R2=0.992) better than Freundlich (R2=0.943) model. Kinetic analyses were conducted using pseudo first-and second-order models. The regression results showed that the adsorption kinetics was more accurately represented by a pseudo second-order model. These results indicate that SiO2 nanoparticles can be used as an effective, low-cost adsorbent to remove fluoride from aqueous solution.


2016 ◽  
Vol 6 (3) ◽  
pp. 377-388 ◽  
Author(s):  
Ibrahim Umar Salihi ◽  
Shamsul Rahman Muhamed Kutty ◽  
Muhamed Hasnain Isa ◽  
Nasir Aminu

Pollution caused by heavy metals has become a serious problem to the environment nowadays. The treatment of wastewater containing heavy metals continues to receive attention because of their toxicity and negative impact on the environment. Recently, various types of adsorbents have been prepared for the uptake of heavy metals from wastewater through the batch adsorption technique. This study focused on the removal of zinc from aqueous solution using microwave incinerated sugarcane bagasse ash (MISCBA). MISCBA was produced using microwave technology. The influence of some parameters such as pH, contact time, initial metal concentration and adsorbent dosage on the removal of zinc was investigated. The competition between H+ and metal ions has affected zinc removal at a low pH value. Optimum conditions for zinc removal were achieved at pH 6.0, contact time 180 min and adsorbent dosage of 10 g/L, respectively. The maximum adsorption capacity for the removal of zinc was found to be 28.6 mg/g. The adsorption process occurred in a multilayered surface of the MISCBA. Chemical reaction was the potential mechanism that regulates the adsorption process. MISCBA can be used as an effective and cheap adsorbent for treatment of wastewater containing zinc metal ions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nurul Umairah M. Nizam ◽  
Marlia M. Hanafiah ◽  
Ebrahim Mahmoudi ◽  
Azhar A. Halim ◽  
Abdul Wahab Mohammad

AbstractIn this study, two biomass-based adsorbents were used as new precursors for optimizing synthesis conditions of a cost-effective powdered activated carbon (PAC). The PAC removed dyes from an aqueous solution using carbonization and activation by KOH, NaOH, and H2SO4. The optimum synthesis, activation temperature, time and impregnation ratio, removal rate, and uptake capacity were determined. The optimum PAC was analyzed and characterized using Fourier-transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), a field emission scanning electron microscope (FESEM), Zeta potential, and Raman spectroscopy. Morphological studies showed single-layered planes with highly porous surfaces, especially PAC activated by NaOH and H2SO4. The results showed that the experimental data were well-fitted with a pseudo-second-order model. Based on Langmuir isotherm, the maximum adsorption capacity for removing methylene blue (MB) was 769.23 mg g−1 and 458.43 mg g−1 for congo red (CR). Based on the isotherm models, more than one mechanism was involved in the adsorption process, monolayer for the anionic dye and multilayer for the cationic dye. Elovich and intraparticle diffusion kinetic models showed that rubber seed shells (RSS) has higher α values with a greater tendency to adsorb dyes compared to rubber seed (RS). A thermodynamic study showed that both dyes’ adsorption process was spontaneous and exothermic due to the negative values of the enthalpy (ΔH) and Gibbs free energy (ΔG). The change in removal efficiency of adsorbent for regeneration study was observed in the seventh cycles, with a 3% decline in the CR and 2% decline in MB removal performance. This study showed that the presence of functional groups and active sites on the produced adsorbent (hydroxyl, alkoxy, carboxyl, and π − π) contributed to its considerable affinity for adsorption in dye removal. Therefore, the optimum PAC can serve as efficient and cost-effective adsorbents to remove dyes from industrial wastewater.


2019 ◽  
Vol 40 ◽  
pp. 78-83
Author(s):  
Rajeshwar Man Shrestha ◽  
Sahira Joshi

Activated carbon prepared coconut shell using Phosphoric acid as an activating agent was investigated to find the feasibility ofits application for removal of Cd(II) from aqueous solution through the adsorption process. The activated carbon thus prepared has been characterized by SEM, XRD, FTIR. SEM morphology has revealed the pores of different diameters while FTIR showed the presence of surface functional groups such as carboxyl, phenolic and lactones. Batch mode kinetics and isotherm studies were carried out to evaluate the effects of contact time, adsorbent dose and pH. The optimum pH, contact time and adsorbent dose needed for the adsorption of the heavy metal have been found to be 6, 180 minutes and 2 g/L respectively. Langmuir and Freundlich isotherm models have been employed to analyze the adsorption equilibrium data. It was found that the adsorption isotherm of Cd(II) onto the activated carbon was the best described by Langmuir with an adsorption capacity of 33.71 mg/g. Kinetic studies showed that a pseudo second-order model was more suitable than the pseudo first-order model. It has been concluded that the activated carbon prepared from coconut shell can be used as an effective adsorbent for the removal of Cd(II) from aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document