scholarly journals Greenhouse Gas (GHG) Emission Estimation from Cropland Remaining Cropland in AFOLU Sector for Various Districts in Sarawak

2018 ◽  
Vol 7 (4.35) ◽  
pp. 73
Author(s):  
E. K. Peng ◽  
M. A. Malek ◽  
N. Azimah Bahrum ◽  
C. S. Tan

Greenhouse gases (GHG) exist in the world and lead to more heat being trapped. The study belongs to part of initiatives to establish GHG emission from Agricultural Forest Land Use (AFOLU) at Sarawak, Malaysia. The study implements Tier 1 methodology of 2006 IPCC (Intergovernmental Panel on Climate Change) Guidelines to estimate carbon dioxide (CO2) emissions from cropland remaining cropland in Sarawak, in which uncertainty analyses are included. The study aids in establishing the quantity as well as trending of CO2 emissions from crops such as fruit trees, cocoa, pepper, rubber and palm oil cultivated in non-urban and non-rural areas of Sarawak from year of 2008 to 2012. Based on this study, it is found that Miri is the highest CO2 emitter from palm oil as compared to other districts with total amount of 681.55 kt C/year. It is also found that CO2 emission from crops cultivated in Limbang (non-urban) is the lowest with total values of 35.84 kt C/year, 16.16 kt C/year, 0.13 kt C/year and 5.08 kt C/year for palm oil, rubber, pepper and fruit trees respectively. Generally, results obtained from this study showed that at most districts in Sarawak, palm oil plantations produce the highest CO2 emission demonstrating increasing trend through-out the study duration, while the rubber plantations ranked second. Estimated emission values of CO2 can be used for planning and mitigation purposes at various level of confidence.

Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 130
Author(s):  
Mihail Busu ◽  
Alexandra Catalina Nedelcu

In the past decades, carbon dioxide (CO2) emissions have become an important issue for many researchers and policy makers. The focus of scientists and experts in the area is mainly on lowering the CO2 emission levels. In this article, panel data is analyzed with an econometric model, to estimate the impact of renewable energy, biofuels, bioenergy efficiency, population, and urbanization level on CO2 emissions in European Union (EU) countries. Our results underline the fact that urbanization level has a negative impact on increasing CO2 emissions, while biofuels, bioenergy production, and renewable energy consumption have positive and direct impacts on reducing CO2 emissions. Moreover, population growth and urbanization level are negatively correlated with CO2 emission levels. The authors’ findings suggest that the public policies at the national level must encourage the consumption of renewable energy and biofuels in the EU, while population and urbanization level should come along with more restrictions on CO2 emissions.


2020 ◽  
Vol 202 ◽  
pp. 09004
Author(s):  
Satya Pinem ◽  
Mahawan Karuniasa ◽  
Chairil Abdini

Oil and gas (O&G) production activities emits greenhouse gases (GHG) which must be well estimated to improve accountability and formulating efficient mitigation. The Indonesia’s GHG emission reported thru Nationally Determined Contribution (NDC) was estimated by Tier-1 Intergovernmental Panel on Climate Change (IPCC) method, while the O&G company adopts different methodology. This leads to asynchronous GHG emission contribution of this industry to national GHG emission. This paper aims to estimate the GHG inventory from O&G offshore production facility by using American Petroleum Institute (API) Compendium Methodology and compare it with Tier-1 IPCC Methodology. It found that GHG emission estimated by API method is significantly lower than IPCC method. Both methods shown fuel combustion sources are the dominant. GHG emission sources from fuel combustion and flaring have been well identified, but emission sources from venting and fugitive need to be improved. Moreover this study identified that to have more accurate national GHG inventory, the GHG calculation method might be different for each industry segment. This evaluation could improve the future national GHG inventory and as reference for the industry. National emission factors database for O&G industry segment is highly suggested to be developed.


2019 ◽  
Author(s):  
Deffi Ayu Puspito Sari

The palm oil industry produces greenhouse gas emissions such as carbon dioxide (CO2), methane (CH4), nitrous oxide(N2O) and other gases through the processing, transportation of vehicles and waste produced. Greenhouse gas emissions can be calculated by the Intergovernmental Panel On Climate Change (IPCC) method. The biggest emission source in the palm oil mill(POM) industry comes from Palm Oil Mill Effluent (POME) and can be reduced by capturing the methane. By making an estimation of greenhouse gases (GHGs) from the operation of the methane capture installation, the total emissions reduced that produced will be known. The palm oil mills that analyzed was a palm oil mill located in Belitung Island, Indonesia. The purpose of this study was to estimate the GHGs emission reduction from the palm oil mill after the installation of biogas methane capture facility. Using IPCC method, the total actual emissions reduction is 70,6%, and without addition of sludge removal in the reactor, the reduction is 84,7%.


2017 ◽  
pp. 65-74 ◽  
Author(s):  
Sutthicha Nilrit ◽  
Pantawat Sampanpanish ◽  
Surat Bualert

Emission of carbon dioxide (CO2), a greenhouse gas, from typical passenger vehicles in Thailand was investigated using a chassis dynamometer in the Automotive Emission Laboratory. The vehicle running method was controlled under the standard Bangkok driving cycle. CO2 emissions were measured at three different speeds for the following four vehicle types commonly used in Thailand: heavy duty diesel (HDD), light duty diesel (LDD), and light duty gasoline (LDG) vehicles and motorcycles (MC). HDD vehicles had the highest average CO2 emission rate, followed by LDD, LDG and MC at 1,198.8±93.1, 268.4±21.3, 166.1±27.7 and 42.5±6.1 g km-1, respectively; all values were significantly different (p < 0.05) from each other. The effect of different fuel types, including diesel, gasoline 91, gasohol 95, gasohol 91, liquid petroleum gas (LPG) and natural gas for vehicles (NGV), on the CO2 emission level was also compared. HDD vehicles had a higher rate of CO2 emission when using either NGV or diesel, while LDD vehicles emitted more CO2 with diesel than with NGV. For LDG vehicles, more CO2 was emitted with gasohol 91 than with gasohol E20, LPG or NGV. Finally, MC had a higher average CO2 emission rate with gasohol 95 than with gasoline 91 and gasohol 91 at any vehicle speed. The CO2 emission rates obtained in this study can be used as a basis to create a database that supports development of an efficient transportation management system and reduced vehicular emission of greenhouse gases in Thailand.


2021 ◽  
Vol 13 (10) ◽  
pp. 1914
Author(s):  
Tomohiro Shiraishi ◽  
Ryuichi Hirata ◽  
Takashi Hirano

Recently, the effect of large-scale fires on the global environment has attracted attention. Satellite observation data are used for global estimation of fire CO2 emissions, and available data sources are increasing. Although several CO2 emission inventories have already been released, various remote sensing data were used to create the inventories depend on the studies. We created eight global CO2 emission inventories through fires from 2001 to 2020 by combining input data sources, compared them with previous studies, and evaluated the effect of input sources on CO2 emission estimation. CO2 emissions were estimated using a method that combines the biomass density change (by the repeated fires) with the general burned area approach. The average annual CO2 emissions of the created eight inventories were 8.40 ± 0.70 Pg CO2 year−1 (±1 standard deviation), and the minimum and maximum emissions were 3.60 ± 0.67 and 14.5 ± 0.83 Pg CO2 year−1, respectively, indicating high uncertainty. CO2 Emissions obtained from four previous inventories were within ±1 standard deviation in the eight inventories created in this study. Input datasets, especially biomass density, affected CO2 emission estimation. The global annual CO2 emissions from two biomass maps differed by 60% (Maximum). This study assesses the performance of climate and fire models by revealing the uncertainty of fire emission estimation from the input sources.


2019 ◽  
Vol 20 (1) ◽  
pp. 37
Author(s):  
Zainuri Zainuri ◽  
Dedi Zargustin ◽  
Gusneli Yanti ◽  
Shanti Wahyuni Megasari

ABSTRACTPalm oil midrib waste has not been utilized so far, so it has potentially contributed CO2 emissions into the atmosphere. The area of oil palm plantations in Riau province in 2015 was 2,400,900 hectares and in 2016 increased by 2,430,500 hectares. The oil palm midrib waste produced by 148 trees per hectare is 3.108 tons/month or 37.296 tons/year. It means that with 2,430,500 hectares of palm plantations, the resulting waste is 90,647,928 tons/year. The waste can affect the environment. If the palm oil midribs that have been cut and then stacked or burned will contribute large CO2 emissions to the environment. One of the efforts to utilize palm oil midrib waste is to use the fiber as an added material in the brick making. The purpose of this study is to calculate the reduction of CO2 emissions by utilizing palm oil midrib waste on fiber-brick production. The method used in this research is a descriptive method. The research carried out is quantitative with an experimental approach and laboratory research. The findings of this study are that the utilization of palm oil midrib fibers which are used as additives to the manufacture of fiber-brick concrete can reduce carbon dioxide (CO2) emissions by 231,420.06 tons/year. The conclusion of this study is that CO2 emissions produced from fiber-brick production machines in 1 m3 are 0.00179 ton and CO2 emissions that can be reduced by utilizing palm oil midrib fiber as an additive to fiber-brick production by 231,420.06 tons/year. Keywords: CO2, emissions, oil palm, midribABSTRAKLimbah pelepah kelapa sawit selama ini masih belum dimanfaatkan, sehingga berpotensi menyumbangkan emisi CO2 ke udara. Luas perkebunan kelapa sawit yang ada di provinsi Riau tahun 2015 adalah 2.400.900 hektar dan pada tahun 2016 meningkat sebesar 2.430.500 hektar. Limbah pelepah kelapa sawit yang dihasilkan oleh 148 pohon per hektar adalah 3,108 ton/bulan atau 37,296 ton/tahun. Artinya, dengan luas perkebunan sawit 2.430.500 hektar, maka limbah yang dihasilkan sebesar 90.647.928 ton/tahun. Limbah tersebut dapat berpengaruh terhadap lingkungan. Apabila pelepah kelapa sawit yang telah dipotong lalu ditumpuk atau dibakar akan menyumbangkan emisi CO2 yang besar terhadap lingkungan. Salah satu upaya memanfaatkan limbah pelepah kelapa sawit adalah memakai seratnya sebagai bahan tambah dalam pembuatan batako. Tujuan penelitian ini untuk menghitung pengurangan emisi CO2 dengan dimanfaatkannya limbah pelepah kelapa sawit pada produksi batako-serat. Metode yang digunakan adalah metode deskriptif. Penelitian yang dilaksanakan bersifat kuantitatif dengan pendekatan eksperimental dan riset laboratorium. Temuan penelitian ini adalah bahwa pemanfaatan serat pelepah kelapa sawit yang dijadikan sebagai bahan tambah pada pembuatan batako-serat dapat mengurangi emisi karbon dioksida (CO2) sebesar 231.420,06 ton/tahun. Kesimpulan penelitian ini adalah bahwa emisi CO2 yang dihasilkan dari mesin produksi batako-serat dalam 1 m3 adalah 0,00179 ton/m3 dan emisi CO2 yang dapat dikurangi dengan memanfaatkan serat pelepah kelapa sawit sebagai bahan tambah pada produksi batako-serat sebesar 231.420,06 ton/tahun.Kata kunci: CO2, emisi, kelapa sawit, pelepah


2019 ◽  
Vol 11 (12) ◽  
pp. 3419
Author(s):  
Seongmin Kang ◽  
Sungheum Cho ◽  
Ki-Hyun Kim ◽  
Eui-chan Jeon

In this study, greenhouse gas (GHG) differences due to the application of biomass content are compared at a sewage sludge incinerator. The result of the comparison shows that the differences between the methods of GHG emission estimation based on biomass fraction analysis (sewage sludge analysis and sewage sludge flue gas analysis) were not substantial. On the other hand, the GHG emission estimated from the method in this study showed a difference of 8–9 ton CO2eq/day from the currently used method in Korea. This implies that the latter underestimates the GHG emissions because CO2 emission was not taken into account upon estimating the GHG emission from sewage sludge. Therefore, it has been determined that, from now on, emissions due to CO2 should be reflected in the estimation of GHG emission from sewage sludge.


2019 ◽  
Vol 11 (2) ◽  
pp. 385 ◽  
Author(s):  
Huihui Wang ◽  
Weihua Zeng

Commuting to and from work is one of the most important and regular routines using urban transport, being a major source for an increase in transport-related carbon dioxide (CO2) emissions. In this study, we explore the characteristics of CO2 emissions from commuter travel in Beijing from different perspectives. A bottom-up approach from a macro perspective is used to analyze recent changing trends of carbon emissions due to commuter travel modes in Beijing, and to identify the main sources of carbon emission increases that affect transportation. To identify CO2 emission characteristics and influencing mechanisms in Beijing, the proportion of commuting modes, commuting distance, and commuting-related CO2 emissions by Ring Roads was analyzed. The commuting-related CO2 emission model, based on Tobit models from the microscopic perspective, was constructed to explore the main factors affecting CO2 emissions of individuals/households. Results show that CO2 emissions due to commuting in Beijing in recent years has presented an increasing trend. In 2014, the amount of CO2 emissions from commuters had already reached the level of 553.68 × 104 t, with CO2 emissions generated by car trips accounting for 75–80% of emissions. Average individual/household commuting-related CO2 emissions on the Ring Road inside the main urban areas of Beijing shows a gradual increasing trend, with the growth trends between the 3rd–5th Ring Road being the largest. Household locations separated by Ring Roads and the occupation type of residents are important factors affecting CO2 emissions. Commuters with access to a car, those having a higher income, and those located in the outer regions of the main urban areas produce more CO2 emissions. To reduce the increasing trend of CO2 emissions in Beijing, it is important that the government accelerates the development of public transport, industry, and residential facilities along the outskirts of the city, along the Ring Road, and along the radix road.


2010 ◽  
Vol 7 (5) ◽  
pp. 1505-1514 ◽  
Author(s):  
A. Hooijer ◽  
S. Page ◽  
J. G. Canadell ◽  
M. Silvius ◽  
J. Kwadijk ◽  
...  

Abstract. Forested tropical peatlands in Southeast Asia store at least 42 000 Million metric tonnes (Mt) of soil carbon. Human activity and climate change threatens the stability of this large pool, which has been decreasing rapidly over the last few decades owing to deforestation, drainage and fire. In this paper we estimate the carbon dioxide (CO2) emissions resulting from drainage of lowland tropical peatland for agricultural and forestry development which dominates the perturbation of the carbon balance in the region. Present and future emissions from drained peatlands are quantified using data on peatland extent and peat thickness, present and projected land use, water management practices and decomposition rates. Of the 27.1 Million hectares (Mha) of peatland in Southeast Asia, 12.9 Mha had been deforested and mostly drained by 2006. This latter area is increasing rapidly because of increasing land development pressures. Carbon dioxide (CO2) emission caused by decomposition of drained peatlands was between 355 Mt y−1 and 855 Mt y−1 in 2006 of which 82% came from Indonesia, largely Sumatra and Kalimantan. At a global scale, CO2 emission from peatland drainage in Southeast Asia is contributing the equivalent of 1.3% to 3.1% of current global CO2 emissions from the combustion of fossil fuel. If current peatland development and management practices continue, these emissions are predicted to continue for decades. This warrants inclusion of tropical peatland CO2 emissions in global greenhouse gas emission calculations and climate mitigation policies. Uncertainties in emission calculations are discussed and research needs for improved estimates are identified.


2012 ◽  
Vol 518-523 ◽  
pp. 2293-2297
Author(s):  
Xiao Zhang

The paper proposes a two-step evaluation process to assess the developed driving cycles for carbon dioxide emissions. The first step is to compare the driving operating mode distributions from developed driving cycles with real world ones. The second step is to predict the carbon dioxide (CO2) emissions by using the developed driving cycles under the latest version of MOVES, MOVES2010 framework, which are then compared with and evaluated by the real-world CO2 emissions. Evaluation results show that the driving cycles developed by the driving operating mode distribution measure result in more accurate CO2 emission estimations.


Sign in / Sign up

Export Citation Format

Share Document