scholarly journals First report of an invasive pest, Phyllonorycter populifoliella (Lepidoptera: Gracillariidae) from Ladakh

2021 ◽  
Vol 117 (3) ◽  
pp. 1
Author(s):  
Barkat HUSSAIN ◽  
Abdul Rasheed Rasheed WAR ◽  
Ejaz Ahmad KANDOO

<p><em>Phyllonorycter populifoliella</em> (Treitschke 1883), is an invasive pest and is first reported on poplar trees, from the eastern region of Ladakh, India. The details of the taxonomic identification based on genital morphology are presented. Besides, host range, feeding habits and level of infestation in different hamlets of Ladakh are also presented. This study is important for further understanding the pest biology, its diversity and management by adopting control strategies. It is also important to restrict its dispersal to other states of the Indian union and to devise pest management strategies for this pest.</p><p> </p>

2007 ◽  
Vol 15 (02) ◽  
pp. 235-260 ◽  
Author(s):  
HONG ZHANG ◽  
LANSUN CHEN ◽  
PAUL GEORGESCU

In this paper, we propose two impulsive differential systems concerning biological and, respectively, integrated pest management strategies. In each case, it is observed that there exists a globally asymptotically stable susceptible pest-eradication periodic solution on condition that the amount of infective pests released periodically is larger than a certain critical value. When the amount of infective pests released is less than this critical value, the system is shown to be permanent, which implies that the trivial susceptible pest-eradication solution loses its stability. Further, the existence of a non-trivial periodic solution is also studied by means of numerical simulations. In the case in which a single control is used, one can only use the amount of infective pests which are periodically released in order to control pests at desirable low levels, while in the case in which integrated management is used, one can use the proportion of pests removed by means of spraying chemical pesticides together with the amount of infective pests which are periodically released to control pests at desirable low levels.


Author(s):  
Estefanía Rodríguez ◽  
Mª Mar Téllez ◽  
Dirk Janssen

(1) Background: Tomato leaf curl New Delhi virus (ToLCNDV), transmitted by tobacco whitefly (Bemisia tabaci Gennadius) (Hemiptera: Aleyrodidae), is of major concern in the cultivation of zucchini. The threat of this virus motivates reliance on chemical vector control but European consumers’ demands for vegetables grown free of pesticides provides an important incentive for alternative pest management; (2) Methods: Different whitefly management strategies and ToLCNDV incidences were surveyed in commercial zucchini greenhouses in south-east Spain. In an experimental greenhouse, three different whitefly control strategies, biological, chemical, and integrated (IPM), were evaluated in a replicated trial to determine the most effective strategy for virus suppression (3) Results: Whitefly was present in all commercial zucchini crops surveyed, whereas fewer crops had Amblyseius swirskii or other natural enemies. During three consecutive years, pest management was increasingly based on chemical treatments. Yet, ToLCNDV was widespread in zucchini greenhouses. Experimental results showed that the order of best strategy for virus suppressing was integrated management (73%) > biological control (58%) > chemical control (44%); and (4) Conclusions: IPM was the best strategy for virus suppression. The results can assist in the design of appropriate control strategies for chemical pesticide reduction and decision-making in pest management.


1992 ◽  
Vol 6 (3) ◽  
pp. 765-770 ◽  
Author(s):  
Homer M. Lebaron ◽  
Jonathan Gressel ◽  
Bernard C. Smale ◽  
Diana M. Horne

A group of scientists from academia, government, and industry, along with ecologists, regulators, conservationists, and grower representatives have formed an International Organization for Resistant Pest Management (IOPRM) to review and delineate proactive and retroactive management strategies for specific cases of pesticide resistance. Within IOPRM, technical working groups were appointed to deal with each pest group. The Weed Resistance Management Working Group (WRMWG) is chaired by Drs. Jonathan Gressel and Leonard Saari, and will deal with the analysis and promoting of alternative control strategies for case studies where a high risk of herbicide resistant weeds exists. Based on our experience to date, crops such as wheat, corn, and soybeans and weeds such as kochia, annual ryegrass and blackgrass, will be used as models to develop optimum weed resistance management programs. The group is especially looking for herbicide and weed control data on negative-cross resistance, econometric models, novel management procedures, and quantitative data from weed scientists and other research and extension communities that could facilitate reaching optimal management decisions. All recommendations and experiences will be communicated through a worldwide network.


HortScience ◽  
1993 ◽  
Vol 28 (4) ◽  
pp. 260C-260
Author(s):  
Marvin P. Pritts

This LISA project involves four state universities and the USDA, and has the objective of developing and evaluating non-conventional production and pest management strategies for raspberries and strawberries. Production goals are divided between cropping systems and pest management. The evaluation of trellising systems for cropping efficiency, ease of harvest, and spray distribution is an example of a production related objective. Groundcover management systems for strawberries are being evaluated for their effects on both the pest complex and production system. Biological control strategies for root diseases are also being studied. Evaluations involve field performance, economics, and impacts on pesticide use. In addition, grower attitudes towards adoption of non-traditional production practices have been assessed. The project supports the publication of a newsletter that is distributed to 450 growers. The major goal of our work has been to improve production efficiency and provide growers with economical, dependable tools that can be used to prevent pest problems before chemical intervention is required.


2021 ◽  
Vol 12 ◽  
Author(s):  
Victoria Mora ◽  
Manikandan Ramasamy ◽  
Mona B. Damaj ◽  
Sonia Irigoyen ◽  
Veronica Ancona ◽  
...  

Potato (Solanum tuberosum L.) is an important food crop worldwide. As the demand for fresh and processed potato products is increasing globally, there is a need to manage and control devastating diseases such as zebra chip (ZC). ZC disease causes major yield losses in many potato-growing regions and is associated with the fastidious, phloem-limited bacterium Candidatus Liberibacter solanacearum (CLso) that is vectored by the potato-tomato psyllid (Bactericera cockerelli Šulc). Current management measures for ZC disease mainly focus on chemical control and integrated pest management strategies of the psyllid vector to limit the spread of CLso, however, they add to the costs of potato production. Identification and deployment of CLso and/or the psyllid resistant cultivars, in combination with integrated pest management, may provide a sustainable long-term strategy to control ZC. In this review, we provide a brief overview of the ZC disease, epidemiology, current management strategies, and potential new approaches to manage ZC disease in the future.


2021 ◽  
Vol 51 (9) ◽  
Author(s):  
Adelia Maria Bischoff ◽  
Jason Lee Furuie ◽  
Alessandra Benatto ◽  
Rubens Candido Zimmermann ◽  
Emily Silva Araujo ◽  
...  

ABSTRACT: Increased production of the Cape gooseberry (Physalis peruviana L.) in Brazil has given rise to interest in identifying the phytophagous species that might damage this crop to inform preventive control and integrated pest management strategies. In this study, we report the occurrence and describe the damage that larvae and adults of Lema bilineata Germar (Coleoptera: Chrysomelidae) cause in P. peruviana. The number of L. bilineata individuals, both larvae and adults, significantly affected the total consumption of P. peruviana leaves. We also report, for the first time, three natural enemies, including a fungus, a fly, and an ant, which are associated with this pest in Brazil and may play a role in biological control strategies.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 494f-495 ◽  
Author(s):  
Amy M. Johnson ◽  
Greg D. Hoyt

An experiment was established to determine the effect of different tillage practices, vegetable crop rotations, and pest management strategies on crop yield, plant diseases, pest and beneficial arthropods, weed species changes over time, and soil environmental consequences. This poster describes nitrogen movement from the various treatments over a 3-year rotation. The treatments are: 1) conventional tillage with chemically based IPM; 2) conventional tillage with biologically based IPM; 3) conservation tillage with chemically based IPM; 4) conservation tillage with biologically based IPM; and 5) conventional tillage with no fertilizer or pest management. Mid-season soil analyses with depth showed chemical-fertilized plowed and conservation-tilled treatments with more soil available nitrogen at most depths compared to the biological-based IPM systems (soybean meal was used as a nitrogen source). However, the biological-based systems did supply enough soil nitrogen to produce similar yield results as the chemical-based systems. Less soil nitrate was measured in the 30- to 90-cm depths at harvest from the biological-based systems than chemical-based systems. Conservation-tilled systems had greater nitrate with depth compared to conventional-tilled systems.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 177
Author(s):  
Aline Moreira Dias ◽  
Miguel Borges ◽  
Maria Carolina Blassioli Moraes ◽  
Matheus Lorran Figueira Coelho ◽  
Andrej Čokl ◽  
...  

Stink bugs are major pests in diverse crops around the world. Pest management strategies based on insect behavioral manipulation could help to develop biorational management strategies of stink bugs. Insect mating disruption using vibratory signals is an approach with high potential for pest management. The objective of this work was to investigate the effect of conspecific female rival signals on the mating behavior and copulation of three stink bug species to establish their potential for mating disruption. Previously recorded female rival signals were played back to bean plants where pairs of the Neotropical brown stink bug, Euschistus heros, and two green stink bugs, Chinavia ubica and Chinavia impicticornis were placed. Vibratory communication and mating behavior were recorded for each pair throughout the experimental time (20 min). Female rival signals show a disrupting effect on the reproductive behavior of three conspecific investigated stink bug species. This effect was more clearly expressed in E. heros and C. ubica than in C. impicticornis. The likelihood of copulating in pairs placed on control plants, without rival signals, increased 29.41 times in E. heros, 4.6 times in C. ubica and 1.71 times in C. impicticornis. However, in the last case, the effect of female rivalry signals in copulation was not significant. The effect of mating disruption of female rival signals of the three stink bug species may originate from the observed reduction in specific vibratory communication signals emitted, which influences the duet formation and further development of different phases of mating behavior. Our results suggest that female rival signals have potential for application in manipulation and disruption of mating behavior of stink bugs. Further work needs to focus on the effects of female rival signals used in long duration experiments and also their interactions with chemical communication of stink bugs.


Author(s):  
Lu-Lu Li ◽  
Ji-Wei Xu ◽  
Wei-Chen Yao ◽  
Hui-Hui Yang ◽  
Youssef Dewer ◽  
...  

Abstract The tobacco cutworm Spodoptera litura (Lepidoptera: Noctuidae) is a polyphagous pest with a highly selective and sensitive chemosensory system involved in complex physiological behaviors such as searching for food sources, feeding, courtship, and oviposition. However, effective management strategies for controlling the insect pest populations under threshold levels are lacking. Therefore, there is an urgent need to formulate eco-friendly pest control strategies based on the disruption of the insect chemosensory system. In this study, we identified 158 putative chemosensory genes based on transcriptomic and genomic data for S. litura, including 45 odorant-binding proteins (OBPs, nine were new), 23 chemosensory proteins (CSPs), 60 odorant receptors (ORs, three were new), and 30 gustatory receptors (GRs, three were new), a number higher than those reported by previous transcriptome studies. Subsequently, we constructed phylogenetic trees based on these genes in moths and analyzed the dynamic expression of various genes in head capsules across larval instars using quantitative real-time polymerase chain reaction. Nine genes–SlitOBP8, SlitOBP9, SlitOBP25, SlitCSP1, SlitCSP7, SlitCSP18, SlitOR34, SlitGR240, and SlitGR242–were highly expressed in the heads of 3- to 5-day-old S. litura larvae. The genes differentially expressed in olfactory organs during larval development might play crucial roles in the chemosensory system of S. litura larvae. Our findings substantially expand the gene inventory for S. litura and present potential target genes for further studies on larval feeding in S. litura.


Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 41
Author(s):  
Ya-Wen Chang ◽  
Yu-Cheng Wang ◽  
Xiao-Xiang Zhang ◽  
Junaid Iqbal ◽  
Yu-Zhou Du

The leafminer fly, Liriomyza trifolii, is an invasive pest of vegetable and horticultural crops in China. In this study, a microinjection method based on dsRNA was developed for RNA interference (RNAi) in L. trifolii using genes encoding vacuolar-ATPase (V-ATPase). Expression analysis indicated that V-ATPase B and V-ATPase D were more highly expressed in L. trifolii adults than in larvae or pupae. Microinjection experiments with dsV-ATPase B and dsV-ATPase D were conducted to evaluate the efficacy of RNAi in L. trifolii adults. Expression analysis indicated that microinjection with 100 ng dsV-ATPase B or dsV-ATPase led to a significant reduction in V-ATPase transcripts as compared to that of the dsGFP control (dsRNA specific to green fluorescent protein). Furthermore, lower dsRNA concentrations were also effective in reducing the expression of target genes when delivered by microinjection. Mortality was significantly higher in dsV-ATPase B- and dsV-ATPase D-treated insects than in controls injected with dsGFP. The successful deployment of RNAi in L. trifolii will facilitate functional analyses of vital genes in this economically-important pest and may ultimately result in new control strategies.


Sign in / Sign up

Export Citation Format

Share Document