Frequency-hiding order-preserving encryption with small client storage

2021 ◽  
Vol 14 (13) ◽  
pp. 3295-3307
Author(s):  
Dongjie Li ◽  
Siyi Lv ◽  
Yanyu Huang ◽  
Yijing Liu ◽  
Tong Li ◽  
...  

The range query on encrypted databases is usually implemented using the order-preserving encryption (OPE) technique which preserves the order of plaintexts. Since the frequency leakage of plaintexts makes OPE vulnerable to frequency-analyzing attacks, some frequency-hiding order-preserving encryption (FH-OPE) schemes are proposed. However, existing FH-OPE schemes require either the large client storage of size O ( n ) or O (log n ) rounds of interactions for each query, where n is the total number of plaintexts. To this end, we propose a FH-OPE scheme that achieves the small client storage without additional client-server interactions. In detail, our scheme achieves O ( N ) client storage and 1 interaction per query, where N is the number of distinct plaintexts and N ≤ n . Especially, our scheme has a remarkable performance when N ≪ n . Moreover, we design a new coding tree for producing the order-preserving encoding which indicates the order of each ciphertext in the database. The coding strategy of our coding tree ensures that encodings update in the low frequency when inserting new ciphertexts. Experimental results show that the single round interaction and low-frequency encoding updates make our scheme more efficient than previous FH-OPE schemes.

Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 203
Author(s):  
Xiaohua Huang ◽  
Cheng Zhang ◽  
Keren Dai

Using the piezoelectric effect to harvest energy from surrounding vibrations is a promising alternative solution for powering small electronic devices such as wireless sensors and portable devices. A conventional piezoelectric energy harvester (PEH) can only efficiently collect energy within a small range around the resonance frequency. To realize broadband vibration energy harvesting, the idea of multiple-degrees-of-freedom (DOF) PEH to realize multiple resonant frequencies within a certain range has been recently proposed and some preliminary research has validated its feasibility. Therefore, this paper proposed a multi-DOF wideband PEH based on the frequency interval shortening mechanism to realize five resonance frequencies close enough to each other. The PEH consists of five tip masses, two U-shaped cantilever beams and a straight beam, and tuning of the resonance frequencies is realized by specific parameter design. The electrical characteristics of the PEH are analyzed by simulation and experiment, validating that the PEH can effectively expand the operating bandwidth and collect vibration energy in the low frequency. Experimental results show that the PEH has five low-frequency resonant frequencies, which are 13, 15, 18, 21 and 24 Hz; under the action of 0.5 g acceleration, the maximum output power is 52.2, 49.4, 61.3, 39.2 and 32.1 μW, respectively. In view of the difference between the simulation and the experimental results, this paper conducted an error analysis and revealed that the material parameters and parasitic capacitance are important factors that affect the simulation results. Based on the analysis, the simulation is improved for better agreement with experiments.


Author(s):  
Satenik Harutyunyan ◽  
Davresh Hasanyan

A non-linear theoretical model including bending and longitudinal vibration effects was developed for predicting the magneto electric (ME) effects in a laminate bar composite structure consisting of magnetostrictive and piezoelectric multi-layers. If the magnitude of the applied field increases, the deflection rapidly increases and the difference between experimental results and linear predictions becomes large. However, the nonlinear predictions based on the present model well agree with the experimental results within a wide range of applied electric field. The results of the analysis are believed to be useful for materials selection and actuator structure design of actuator in actuator fabrication. It is shown that the problem for bars of symmetrical structure is not divided into a plane problem and a bending problem. A way of simplifying the solution of the problem is found by an asymptotic method. After solving the problem for a laminated bar, formula that enable one to change from one-dimensional required quantities to three dimensional quantities are obtained. The derived analytical expression for ME coefficients depend on vibration frequency and other geometrical and physical parameters of laminated composites. Parametric studies are presented to evaluate the influences of material properties and geometries on strain distribution and the ME coefficient. Analytical expressions indicate that the vibration frequency strongly influences the strain distribution in the laminates, and that these effects strongly influence the ME coefficients. It is shown that for certain values of vibration frequency (resonance frequency), the ME coefficient becomes infinity; as a particular case, low frequency ME coefficient were derived as well.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Huaibao Chu ◽  
Xiaolin Yang ◽  
Shuanjie Li ◽  
Weimin Liang

The propagation and attenuation rule of blasting vibration wave parameters is the most important foundation of blasting vibration prediction and control. In this work, we pay more attention to the influence of the damage accumulation effect on the propagation and attenuation rule of vibration wave parameters. A blasting damage accumulation experiment was carried out, the ultrasonic wave velocity of the specimens was measured, and the damage value was calculated during the experiment. The blasting vibration wave was monitored on the surface of the specimens, and its energy was calculated by using the sym8 wavelet basis function. The experimental results showed that with the increase in the number of blasts, the damage continues to increase; however, the vibration velocity and the main frequency decrease continuously, the unfocused vibration wave energy in the zone near to the blasting source is rapidly concentrated in the low-frequency band (frequency bands 1 to 3), and the energy is further concentrated in the low-frequency band in the intermediate zone and zone far from the blasting source. There is a distortion process in which the vibration velocity and the main frequency increase slightly and the energy of the blasting vibration wave converges to the high-frequency band (the 5th band) before the sudden unstable fracture failure of the specimens. The experimental results indicate that the prediction and evaluation of blasting vibration should consider the variation rule of blasting vibration wave parameters synthetically based on the cumulative damage effect, and it is not safe to use only one fixed vibration control standard for the whole blasting operation.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5042
Author(s):  
Salvatore A. Pullano ◽  
Maria Giovanna Bianco ◽  
Davide C. Critello ◽  
Michele Menniti ◽  
Antonio La Gatta ◽  
...  

Low frequency ultrasounds in air are widely used for real-time applications in short-range communication systems and environmental monitoring, in both structured and unstructured environments. One of the parameters widely evaluated in pulse-echo ultrasonic measurements is the time of flight (TOF), which can be evaluated with an increased accuracy and complexity by using different techniques. Hereafter, a nonstandard cross-correlation method is investigated for TOF estimations. The procedure, based on the use of template signals, was implemented to improve the accuracy of recursive TOF evaluations. Tests have been carried out through a couple of 60 kHz custom-designed polyvinylidene fluoride (PVDF) hemicylindrical ultrasonic transducers. The experimental results were then compared with the standard threshold and cross-correlation techniques for method validation and characterization. An average improvement of 30% and 19%, in terms of standard error (SE), was observed. Moreover, the experimental results evidenced an enhancement in repeatability of about 10% in the use of a recursive positioning system.


2005 ◽  
Vol 13 (4) ◽  
pp. 333-354 ◽  
Author(s):  
Eddy Caron ◽  
Bruno DelFabbro ◽  
Frédéric Desprez ◽  
Emmanuel Jeannot ◽  
Jean-Marc Nicod

The GridRPC model [17] is an emerging standard promoted by the Global Grid Forum (GGF) that defines how to perform remote client-server computations on a distributed architecture. In this model data are sent back to the client at the end of every computation. This implies unnecessary communications when computed data are needed by an other server in further computations. Since, communication time is sometimes the dominant cost of remote computations, this cost has to be lowered. Several tools instantiate the GridRPC model such as NetSolve developed at the University of Tennessee, Knoxville, USA, and DIET developed at LIP laboratory, ENS Lyon, France. They are usually called Network Enabled Servers (NES). In this paper, we present a discussion of the data management solutions chosen for these two NES (NetSolve and DIET) as well as experimental results.


2014 ◽  
Vol 15 (4) ◽  
pp. 327-333 ◽  
Author(s):  
Mohamad R. Banaei ◽  
M. R. Jannati Oskuee ◽  
F. Mohajel Kazemi

Abstract In this paper, a new advanced topology of stacked multicell inverter is proposed which is generally suitable for high number of steps associated with a low number of switches. Compared with traditional flying capacitor multicell and stacked multicell (SM) inverters, doubling the number of output voltage levels and the RMS value, ameliorating the output voltage frequency spectrum, decreasing the number and rating of components, stored energy and rating of flying capacitors are available with the proposed inverter. These improvements are achieved by adding only four low-frequency switches to the traditional SM inverter’s structure. The suggested topology is simulated using MATLAB/SIMULINK software, and simulation results are presented to indicate well-performance of the novel converter. In addition, the experimental results of proposed topology prototype have been presented to validate its practicability.


Acoustics ◽  
2020 ◽  
Vol 2 (3) ◽  
pp. 617-649
Author(s):  
Sébastien Guérin ◽  
Carolin Kissner ◽  
Pascal Seeler ◽  
Ricardo Blázquez ◽  
Pedro Carrasco Laraña ◽  
...  

A benchmark dedicated to RANS-informed analytical methods for the prediction of turbofan rotor–stator interaction broadband noise was organised within the framework of the European project TurboNoiseBB. The second part of this benchmark focuses on the impact of the acoustic models. Twelve different approaches implemented in seven different acoustic solvers are compared. Some of the methods resort to the acoustic analogy, while some use a direct approach bypassing the calculation of a source term. Due to differing application objectives, the studied methods vary in terms of complexity to represent the turbulence, to calculate the acoustic response of the stator and to model the boundary and flow conditions for the generation and propagation of the acoustic waves. This diversity of approaches constitutes the unique quality of this work. The overall agreement of the predicted sound power spectra is satisfactory. While the comparison between the models show significant deviations at low frequency, the power levels vary within an interval of ±3 dB at mid and high frequencies. The trends predicted by increasing the rotor speed are similar for almost all models. However, most predicted levels are some decibels lower than the experimental results. This comparison is not completely fair—particularly at low frequency—because of the presence of noise sources in the experimental results, which were not considered in the simulations.


2019 ◽  
Vol 205 ◽  
pp. 10004
Author(s):  
Damianos Agathangelou ◽  
Yoelvis Orozco-Gonzalez ◽  
Marí del Carmen Marin Pérez ◽  
Johanna Brazard ◽  
Hideki Kandori ◽  
...  

We report new experimental results on the ultrafast photo-isomerization of ASR - PSBR where, unlike other retinal proteins, point mutations lead to a 2-fold increase of the photo-isomerization speed for the all-trans isomer. Prominent low-frequency vibrational coherences are reported for both the excited and photo-product ground states.


1970 ◽  
Vol 43 (2) ◽  
pp. 385-398 ◽  
Author(s):  
S. Rosenblat ◽  
D. M. Herbert

A Boussinesq fluid is heated from below. The applied temperature gradient is the sum of a steady component and a low-frequency sinusoidal component. An asymptotic solution is obtained which describes the behaviour of infinitesimal disturbances to this configuration. The solution is discussed from the viewpoint of the stability or otherwise of the basic state, and possible stability criteria are analyzed. Some comparison is made with known experimental results.


Sign in / Sign up

Export Citation Format

Share Document