scholarly journals Effect Of Heat Treatment On The Corrosion Resistance Of Aluminized Steel Strips

2015 ◽  
Vol 60 (3) ◽  
pp. 1825-1832 ◽  
Author(s):  
K. Żaba ◽  
M. Nowosielski ◽  
P. Kita ◽  
M. Kwiatkowski ◽  
T. Tokarski ◽  
...  

AbstractThe paper presents the results of corrosion resistance of heat treated aluminized steel strips. Products coated by Al-10Si alloy are used among others in a manufacturing process of welded pipes as the elements of the car exhaust systems, working in high temperatures and different environments (eg. wet, salty). The strips and tubes high performance requirements are applied to stability, thickness and roughness of Al-Si coating, adhesion and corrosion resistance. Tubes working in elements of exhaust systems in a wide range of temperatures are exposed to the effects of many aggressive factors, such as salty snow mud. It was therefore decided to carry out research on the impact of corrosion on the environmental influence on heat treated aluminized steel strips. The heat treatment was carried out temperatures in the range 250-700°C for 30, 180, 1440 minutes. Then the coatings was subjected to cyclic impact of snow mud. Total duration of treatment was 12 months and it was divided into three stages of four months and at the end of each stage was made the assessment of factor of corrosion. The results are presented in the form of macroscopic, microscopic (using a scanning electron microscope) observations and the degree and type of rusty coating.

2018 ◽  
Vol 69 (5) ◽  
pp. 1055-1059 ◽  
Author(s):  
Mariana Ciurdas ◽  
Ioana Arina Gherghescu ◽  
Sorin Ciuca ◽  
Alina Daniela Necsulescu ◽  
Cosmin Cotrut ◽  
...  

Aluminium bronzes are exhibiting good corrosion resistance in saline environments combined with high mechanical properties. Their corrosion resistance is obviously confered by the alloy chemical composition, but it can also be improved by heat treatment structural changes. In the present paper, five Cu-Al-Fe-Mn bronze samples were subjected to annealing heat treatments with furnace cooling, water quenching and water quenching followed by tempering at three different temperatures: 200, 400 and 550�C. The heating temperature on annealing and quenching was 900�C. The structure of the heat treated samples was studied by optical and scanning electron microscopy. Subsequently, the five samples were submitted to corrosion tests. The best resistance to galvanic corrosion was showed by the quenched sample, but it can be said that all samples are characterized by close values of open-circuit potentials and corrosion potentials. Concerning the susceptibility to other types of corrosion (selective leaching, pitting, crevice corrosion), the best corrosion resistant structure consists of a solid solution, g2 and k compounds, corresponding to the quenched and 550�C tempered sample.


Author(s):  
Marios Kazasidis ◽  
Elisa Verna ◽  
Shuo Yin ◽  
Rocco Lupoi

AbstractThis study elucidates the performance of cold-sprayed tungsten carbide-nickel coating against solid particle impingement erosion using alumina (corundum) particles. After the coating fabrication, part of the specimens followed two different annealing heat treatment cycles with peak temperatures of 600 °C and 800 °C. The coatings were examined in terms of microstructure in the as-sprayed (AS) and the two heat-treated conditions (HT1, HT2). Subsequently, the erosion tests were carried out using design of experiments with two control factors and two replicate measurements in each case. The effect of the heat treatment on the mass loss of the coatings was investigated at the three levels (AS, HT1, HT2), as well as the impact angle of the erodents (30°, 60°, 90°). Finally, the response surface methodology (RSM) was applied to analyze and optimize the results, building the mathematical models that relate the significant variables and their interactions to the output response (mass loss) for each coating condition. The obtained results demonstrated that erosion minimization was achieved when the coating was heat treated at 600 °C and the angle was 90°.


2011 ◽  
Vol 189-193 ◽  
pp. 3891-3894
Author(s):  
Ya Min Li ◽  
Hong Jun Liu ◽  
Yuan Hao

The casting Fe3Al intermetallics were solidified in sodium silicate sand mould and permanent mould respectively to get different cooling rates. After heat treatment (1000°С/15 h homogenizing annealing + furnace cooling followed by 600°С/1 h tempering + oil quenching), the microstructure and properties of Fe3Al intermetallics were investigated. The results show that the heat-treated Fe3Al intermetallics at higher cooling rate has finer grained microstructure than lower cooling rate, and the lattice distortion increases due to the higher solid solubility of the elements Cr and B at higher cooling rate. The tensile strength and hardness of the Fe3Al intermetallics at higher cooling rate are slightly higher also. However, the impact power of intermetallics at higher cooling rate is 67.5% higher than that at lower cooling rate, and the impact fracture mode is also transformed from intercrystalline fracture at lower cooling rate to intercrystallin+transcrystalline mixed fracture at higher cooling rate.


2007 ◽  
Vol 344 ◽  
pp. 383-390 ◽  
Author(s):  
Marion Merklein ◽  
Uwe Vogt

Tailored Heat Treated Blanks (THTB) are blanks that exhibit locally different strength specifically optimized for the succeeding forming process. The strength distribution is set by a local, short-term heat treatment modifying the mechanical properties of the material. Hence, THTB allow enhancing forming limits significantly leading to shorter and more robust manufacture process chains. In order to qualify the use of THTB under quasi series conditions, the interdependencies of the blank’s local heat treatment and the entire process chain of the car body manufacture have to be analyzed. In this respect, the impact of a short-term heat treatment on the mechanical properties of AA6181PX, a commonly used aluminum alloy in today’s car bodies, was studied. Also the influence of a short-term heat treatment on the coil lubricant, usually already applied by the material supplier, was given a closer look. Based on these experiments process restrictions for the application of THTB in an industrial automotive environment were derived and a process window for the THTB design was set up. In conclusion, strategies were defined how to enhance the found process boundaries leading to a more robust process window.


2019 ◽  
Vol 56 (1) ◽  
pp. 261-270
Author(s):  
Maria Stoicanescu ◽  
Aurel Crisan ◽  
Ioan Milosan ◽  
Mihai Alin Pop ◽  
Jose Rodriguez Garcia ◽  
...  

This paper presents and discusses research conducted with the purpose of developing the use of solar energy in the heat treatment of steels. For this, a vertical axis solar furnace called at Plataforma Solar de Almeria was adapted such as to allow control of the heating and cooling processes of samples made from 1.1730 steel. Thus temperature variation in pre-set points of the heated samples could be monitored in correlation with the working parameters: the level of solar radiation and implicitly the energy used the conditions of sample exposed to solar radiation, and the various protections and cooling mediums.The recorded data allowed establishing the types of treatments applied for certain working conditions. The distribution of hardness, as the representative feature resulting from heat treatment, was analysed on all sides of the treated samples. In correlation with the time-temperature-transformation diagram of 1.1730 steel, the measured values confirmed the possibility of using solar energy in all types of heat treatment applied to this steel. In parallel the efficiency of using solar energy was analysed in comparison to the energy obtained by burning methane gas for the heat treatment for the same set of samples. The analysis considered energy consumption, productivity and the impact on the environment. Thanks to various data obtained through developed experiences, which cover a wide range of thermic treatments applied steels 1.1730 model, we can certainly state that this can be a solid base in using solar energy in applications of thermic treatment at a high industrial level.


2018 ◽  
Vol 25 (08) ◽  
pp. 1950023 ◽  
Author(s):  
ARKADEB MUKHOPADHYAY ◽  
TAPAN KUMAR BARMAN ◽  
PRASANTA SAHOO

The present work reports the deposition of a quaternary Ni-B-W-Mo coating on AISI 1040 medium carbon steel and its characterization. Quaternary deposits are obtained by suitably modifying existing electroless Ni-B bath. Composition of the as-deposited coating is analyzed by energy dispersive X-ray spectroscopy. The structural aspects of the as-deposited and coatings heat treated at 300[Formula: see text]C, 350[Formula: see text]C, 400[Formula: see text]C, 450[Formula: see text]C and 500[Formula: see text]C are determined using X-ray diffraction technique. Surface of the as-deposited and heat-treated coatings is examined using a scanning electron microscope. Very high W deposition could be observed when sodium molybdate is present in the borohydride-based bath along with sodium tungstate. The coatings in their as-deposited condition are amorphous while crystallization takes place on heat treatment. A nodulated surface morphology of the deposits is also observed. Vickers’ microhardness and crystallite size measurement reveal inclusion of W and Mo results in enhanced thermal stability of the coatings. Solid solution strengthening of the electroless coatings by W and Mo is also observed. The applicability of kinetic strength theory to the hardening of the coatings on heat treatment is also investigated. Corrosion resistance of Ni-B-W-Mo coatings and effect of heat treatment on the same are also determined by electrochemical techniques.


Alloy Digest ◽  
2021 ◽  
Vol 70 (9) ◽  

Abstract Raffmetal EN AB-Al Si7Mg0.3 (EN AB-42100) is a heat-treatable, Al-Si-Mg casting alloy in ingot form for remelting. It is used extensively for producing sand, permanent mold and investment castings for applications requiring a combination of excellent casting characteristics, high strength with good elongation, and good corrosion resistance. This alloy can be produced to a wide range of mechanical properties by making small adjustments to the magnesium content and/or heat treatment. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Al-480. Producer or source: Raffmetal S.p.A.


CORROSION ◽  
10.5006/3813 ◽  
2021 ◽  
Author(s):  
Donovan Verkens ◽  
Reynier Revilla ◽  
Mert Günyüz ◽  
Cemil Işıksaçan ◽  
Herman Terryn ◽  
...  

The AA3003 alloy is widely used as fin material in heat exchangers. The life time of these heat exchangers is mostly determined by their corrosion properties. Twin roll casting (TRC) of AA3003 material is known to often result in the formation of a macrosegregation area of alloying elements towards the centre plane of the casted strip (centre line segregation = CLS). Considering the potential exposure of cross-sectional areas of TRC material in the heat exchanger fin application, and the relatively high corrosion susceptibility of the CLS, the study of this region is of key importance to understand the microstructural effects on the resulting corrosion mechanisms and kinetics for these materials. Typically the alloys are homogenized to bring the microstructures closer to an equilibrium state, but the impact of this heat treatment on the corrosion properties is insufficiently studied. Therefore, this study investigates the effect of different homogenization procedures on the corrosion properties of the CLS and the interaction of the intermetallic particles with the surrounding aluminium matrix. This work shows that the pitting corrosion resistance is greatly dependent on the homogenization temperature, with better corrosion resistance obtained with higher temperature, especially near the CLS. This difference in corrosion behaviour is completely attributed to a difference in microstructure and not to an oxide layer effect. Furthermore, it is observed that not only temperature will have a large influence on the corrosion resistance, but duration of the heat treatment as well.


1990 ◽  
Vol 112 (1) ◽  
pp. 116-123 ◽  
Author(s):  
W. J. Mills ◽  
L. D. Blackburn

Heat-to-heat and product-form variations in the JIC fracture toughness for Alloy 718 were characterized at 24, 427, and 538°C using the multiple-specimen JR-curve method. Six different material heats along with three product forms from one of the heats were tested in the modified heat treated condition. This heat treatment was developed at Idaho National Engineering Laboratory to improve the impact toughness for Alloy 718 weldments, but it has also been found to enhance the fracture resistance for the base metal. Statistical analysis of test results revealed four distinguishable JIC levels with mean toughness levels ranging from 87 to 190 kJ/m2 at 24°C. At 538°C, JIC values were 15 to 20 percent lower than room temperature toughness levels. Minimum expected values of JIC (ranging from 72 kJ/m2 at 24°C to 48 kJ/m2 at 538°C) and dJR/da (27 MPa at 24 to 538°C) were established based on tolerance intervals bracketing 90 percent of the lowest JIC and dJR/da populations at a 95 percent confidence level. Metallographic and fractographic examinations were performed to relate key microstructural features and operative fracture mechanisms to macroscopic properties.


Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 791
Author(s):  
Xinjie Cui ◽  
Junji Matsumura

To quickly clarify the effect of heat treatment on weatherability of Cunninghamia lanceolate (Lamb.) Hook., we investigated the surface degradation under natural exposure. A comparison between heat-treated and untreated samples was taken based on surface color changes and structural decay at each interval. Over four weeks of natural exposure, multiple measurements were carried out. Results show that color change decreased in the order of 220 °C heat-treated > untreated > 190 °C heat-treated. The results also indicate that the wood surface color stability was improved via the proper temperature of thermal modification. Low vacuum scanning electron microscopy (LVSEM) results expressed that thermal modification itself had caused shrinking in the wood surface structure. From the beginning of the weathering process, the heat treatment affected the surface structural stability. After natural exposure, the degree of wood structure decay followed the pattern 220 °C heat-treated > 190 °C heat-treated > untreated. Therefore, when considering the impact on the structure, thermal modification treatment as a protective measure to prevent weathering was not an ideal approach and requires further improvement.


Sign in / Sign up

Export Citation Format

Share Document