Solar activity and COVID-19 pandemic

2021 ◽  
Vol 30 (1) ◽  
pp. 149-158
Author(s):  
Maria Ragulskaya

Abstract Solar activity (SA) dynamics increases mankind’s evolutionary adaptability to pandemics. Flu pandemics from 1880 to 2020 took place during maximum or minimum of solar cycles. The article discusses several factors that modulated the development of the COVID-19 pandemic: SA dynamic, genetic population features, environment temperature, the effect of lockdowns, and vaccination in various countries. The population genetic composition turned out to be the most significant factor for coronavirus mortalities during a SA global minimum 2019-2020. COVID-19 pandemic is most severe in countries with a dominant haplogroup R1b (the relative number of deaths per million is more than 12-25). Local COVID-19 epidemics were more easily in countries with a dominant haplogroup N (relative number of deaths less than 3). The incidence per million people in haplogroups R1b: R1a: N has a ratio of about 7: 2: 1. This ratio does not depend on the pandemic waves and the population vaccinated rate. Vaccination effectiveness may depend on the population’s genetic characteristics too. It is expected to maintain extremely low solar activity during the 30 years. Under these conditions, a twofold increase in the number of pandemics (every 5-6 years instead of 10-11 years) can be expected with pronounced genogeographic differences.

2021 ◽  
Author(s):  
Mariya Ragulskaya ◽  

A feature of the COVID-19 pandemic is a significant variability in the number of deaths per 1 million of population in different countries (4-10 times), while the norm for ordinary flu is 1.5-2 times. The maximum mortality are observed in countries with a high level of development and organization of medicine, but with a dominant haplogroup R1b.The report examines the significant role of solar activity, genetic composition of the population and the degree of social regulation in the geographical unevenness of the severity of the SARS-CoV-2 pandemic. Low solar activity is expected to persist for the next 40 years. Under these conditions, a twofold increase in the number of pandemics can be expected (every 5-6 years instead of 10-11 years) with pronounced genogeographic differences in the development of local epidemics.


Solar Physics ◽  
2021 ◽  
Vol 296 (1) ◽  
Author(s):  
V. Courtillot ◽  
F. Lopes ◽  
J. L. Le Mouël

AbstractThis article deals with the prediction of the upcoming solar activity cycle, Solar Cycle 25. We propose that astronomical ephemeris, specifically taken from the catalogs of aphelia of the four Jovian planets, could be drivers of variations in solar activity, represented by the series of sunspot numbers (SSN) from 1749 to 2020. We use singular spectrum analysis (SSA) to associate components with similar periods in the ephemeris and SSN. We determine the transfer function between the two data sets. We improve the match in successive steps: first with Jupiter only, then with the four Jovian planets and finally including commensurable periods of pairs and pairs of pairs of the Jovian planets (following Mörth and Schlamminger in Planetary Motion, Sunspots and Climate, Solar-Terrestrial Influences on Weather and Climate, 193, 1979). The transfer function can be applied to the ephemeris to predict future cycles. We test this with success using the “hindcast prediction” of Solar Cycles 21 to 24, using only data preceding these cycles, and by analyzing separately two 130 and 140 year-long halves of the original series. We conclude with a prediction of Solar Cycle 25 that can be compared to a dozen predictions by other authors: the maximum would occur in 2026.2 (± 1 yr) and reach an amplitude of 97.6 (± 7.8), similar to that of Solar Cycle 24, therefore sketching a new “Modern minimum”, following the Dalton and Gleissberg minima.


The Holocene ◽  
2021 ◽  
pp. 095968362110604
Author(s):  
Maxim Ogurtsov ◽  
Samuli Helama ◽  
Risto Jalkanen ◽  
Högne Jungner ◽  
Markus Lindholm ◽  
...  

Fifteen proxy records of summer temperature in Fennoscandia, Northern Europe and in Yamal and Taymir Peninsulas (Western Siberia) were analyzed for the AD 1700–2000 period. Century-long (70–100 year) and quasi bi-decadal periodicities were found from proxy records representing different parts of Fennoscandia. Decadal variation was revealed in a smaller number of records. Statistically significant correlations were revealed between the timescale-dependent components of temperature variability and solar cycles of Schwabe (~11 year), Hale (~22 year), and Gleissberg (сentury-long) as recorded in solar activity data. Combining the results from our correlation analysis with the evidence of solar-climatic linkages over the Northern Fennoscandia obtained over the past 20 years suggest that there are two possible explanations for the obtained solar-proxy relations: (a) the Sun’s activity actually influences the climate variability in Northern Fennoscandia and in some regions of the Northern Hemisphere albeit the mechanism of such solar-climatic linkages are yet to be detailed; (b) the revealed solar-type periodicities result from natural instability of climate system and, in such a case, the correlations may appear purely by chance. Multiple lines of evidence support the first assumption but we note that the second one cannot be yet rejected. Guidelines for further research to elucidate this question are proposed including the Fisher’s combined probability test in the presence of solar signal in multiple proxy records.


2013 ◽  
Vol 65 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Mirjana Ocokoljic ◽  
Dragica Vilotic ◽  
Mirjana Sijacic-Nikolic

The general population genetic characteristics of cultivated horse chestnut trees excelling in growth, phenotype characteristics, type of inflorescence, productivity and resistance to the leafminer Cameraria ohridella Deschka and Dimic were analyzed in Serbia. The analyzed population genetic parameters point to fundamental differences in the genetic structure among the cultivated populations in Serbia. The study shows the variability in all properties among the populations and inter-individual variability within the populations. The variability and differential characteristics were assessed using statistical parameters, taking into account the satisfactory reflection of the hereditary potential. The assessed differences in the vitality and evolution potential of different populations can determine the methods of horse chestnut gene pool collection, reconstruction and improvement.


2017 ◽  
Vol 3 (2) ◽  
pp. 5-8
Author(s):  
Линь Ганхуа ◽  
Lin Ganghua ◽  
Ван Сяо-Фань ◽  
Wang Xiao Fan ◽  
Ян Сяо ◽  
...  

This article introduces our ongoing project “Construction of a Century Solar Chromosphere Data Set for Solar Activity Related Research”. Solar activities are the major sources of space weather that affects human lives. Some of the serious space weather consequences, for instance, include interruption of space communication and navigation, compromising the safety of astronauts and satellites, and damaging power grids. Therefore, the solar activity research has both scientific and social impacts. The major database is built up from digitized and standardized film data obtained by several observatories around the world and covers a timespan more than 100 years. After careful calibration, we will develop feature extraction and data mining tools and provide them together with the comprehensive database for the astronomical community. Our final goal is to address several physical issues: filament behavior in solar cycles, abnormal behavior of solar cycle 24, large-scale solar eruptions, and sympathetic remote brightenings. Significant progresses are expected in data mining algorithms and software development, which will benefit the scientific analysis and eventually advance our understanding of solar cycles.


2021 ◽  
Vol 13 (22) ◽  
pp. 4559
Author(s):  
Marjolijn Adolfs ◽  
Mohammed Mainul Hoque

With the availability of fast computing machines, as well as the advancement of machine learning techniques and Big Data algorithms, the development of a more sophisticated total electron content (TEC) model featuring the Nighttime Winter Anomaly (NWA) and other effects is possible and is presented here. The NWA is visible in the Northern Hemisphere for the American sector and in the Southern Hemisphere for the Asian longitude sector under solar minimum conditions. During the NWA, the mean ionization level is found to be higher in the winter nights compared to the summer nights. The approach proposed here is a fully connected neural network (NN) model trained with Global Ionosphere Maps (GIMs) data from the last two solar cycles. The day of year, universal time, geographic longitude, geomagnetic latitude, solar zenith angle, and solar activity proxy, F10.7, were used as the input parameters for the model. The model was tested with independent TEC datasets from the years 2015 and 2020, representing high solar activity (HSA) and low solar activity (LSA) conditions. Our investigation shows that the root mean squared (RMS) deviations are in the order of 6 and 2.5 TEC units during HSA and LSA period, respectively. Additionally, NN model results were compared with another model, the Neustrelitz TEC Model (NTCM). We found that the neural network model outperformed the NTCM by approximately 1 TEC unit. More importantly, the NN model can reproduce the evolution of the NWA effect during low solar activity, whereas the NTCM model cannot reproduce such effect in the TEC variation.


Author(s):  
Г.И. Ельчинова ◽  
З.К. Гетоева ◽  
В.В. Кадышев ◽  
М.Ю. Джаджиева ◽  
Р.А. Зинченко

Генетико-эпидемиологическое обследование населения республики Северная Осетия-Алания проводится сотрудниками лаборатории генетической эпидемиологии ФГБНУ «МГНЦ». В рамках стандартного протокола исследования проводится изучение максимально возможного числа популяционно-генетических характеристик. На основании 27583 брачных записей проанализированы индекс эндогамии, интенсивность метисации и этническая брачная ассортативность в 8 районах Северной Осетии и г. Владикавказе. Выявлены различия этих брачно-миграционных характеристик между двумя субэтносами - иронцами и дигорцами. Дигорцы характеризуются более высокой эндогамностью и более низкой метисацией, чем иронцы. Genetic epidemiological study of the population of the North Ossetia-Alania Republic, Russia, is caring out by the Laboratory of Genetiс Epidemiology of Research Centre for Medical Genetics (Moscow, Russia).Within the framework of the standard protocol we study the maximum of possible population-genetic characteristics. Based on the 27583 marriage records, the index of endogamy, the intensity of metisation and ethnic marriage assortativness in 8 regions of North Ossetia and Vladikavkaz have been analyzed. The differences in the marriage and migration characteristics are revealed for two subethnoses: the Irons and the Digors. The Digors have a higher value of endogamy index and a lower metisation level than the Irons have.


2021 ◽  
Vol 44 ◽  
pp. 100-106
Author(s):  
A.K. Singh ◽  
◽  
A. Bhargawa ◽  

Solar-terrestrial environment is manifested primarily by the physical conditions of solar interior, solar atmosphere and eruptive solar plasma. Each parameter gives unique information about the Sun and its activity according to its defined characteristics. Hence the variability of solar parameters is of interest from the point of view of plasma dynamics on the Sun and in the interplanetary space as well as for the solar-terrestrial physics. In this study, we have analysed various solar transients and parameters to establish the recent trends of solar activity during solar cycles 21, 22, 23 and 24. The correlation coefficients of linear regression of F10.7 cm index, Lyman alpha index, Mg II index, cosmic ray intensity, number of M & X class flares and coronal mass ejections (CMEs) occurrence rate versus sunspot number was examined for last four solar cycles. A running cross-correlation method has been used to study the momentary relationship among the above mentioned solar activity parameters. Solar cycle 21 witnessed the highest value of correlation for F10.7 cm index, Lyman alpha index and number of M-class and X-class flares versus sunspot number among all the considered solar cycles which were 0.979, 0.935 and 0.964 respectively. Solar cycle 22 recorded the highest correlation in case of Mg II index, Ap index and CMEs occurrence rate versus sunspot number among all the considered solar cycles (0.964, 0.384 and 0.972 respectively). Solar cycle 23 and 24 did not witness any highest correlation compared to solar cycle 21 and 22. Further the record values (highest value compared to other solar three cycles) of each solar activity parameters for each of the four solar cycles have been studied. Here solar cycle 24 has no record text at all, this simply indicating that this cycle was a weakest cycle compared to the three previous ones. We have concluded that in every domain solar 24 was weaker to its three predecessors.


2004 ◽  
Vol 22 (6) ◽  
pp. 2239-2243 ◽  
Author(s):  
E. Echer ◽  
N. R. Rigozo ◽  
D. J. R. Nordemann ◽  
L. E. A. Vieira

Abstract. Prediction of solar activity strength for solar cycles 23 and 24 is performed on the basis of extrapolation of sunspot number spectral components. Sunspot number data during 1933-1996 periods (solar cycles 17-22) are searched for periodicities by iterative regression. The periods significant at the 95% confidence level were used in a sum of sine series to reconstruct sunspot series, to predict the strength of solar cycles 23 and 24. The maximum peak of solar cycles is adequately predicted (cycle 21: 158±13.2 against an observed peak of 155.4; cycle 22: 178


2003 ◽  
Vol 21 (6) ◽  
pp. 1303-1313 ◽  
Author(s):  
K. Scherer ◽  
H. J. Fahr

Abstract. Solar wind ram pressure variations occuring within the solar activity cycle are communicated to the outer heliosphere as complicated time-variabilities, but repeating its typical form with the activity period of about 11 years. At outer heliospheric regions, the main surviving solar cycle feature is a periodic variation of the solar wind dynamical pressure or momentum flow, as clearly recognized by observations of the VOYAGER-1/2 space probes. This long-periodic variation of the solar wind dynamical pressure is modeled here through application of appropriately time-dependent inner boundary conditions within our multifluid code to describe the solar wind – interstellar medium interaction. As we can show, it takes several solar cycles until the heliospheric structures adapt to an average location about which they carry out a periodic breathing, however, lagged in phase with respect to the solar cycle. The dynamically active heliosphere behaves differently from a static heliosphere and especially shows a historic hysteresis in the sense that the shock structures move out to larger distances than explained by the average ram pressure. Obviously, additional energies are pumped into the heliosheath by means of density and pressure waves which are excited. These waves travel outwards through the interface from the termination shock towards the bow shock. Depending on longitude, the heliospheric sheath region memorizes 2–3 (upwind) and up to 6–7 (downwind) preceding solar activity cycles, i.e. the cycle-induced waves need corresponding travel times for the passage over the heliosheath. Within our multifluid code we also adequately describe the solar cycle variations in the energy distributions of anomalous and galactic cosmic rays, respectively. According to these results the distribution of these high energetic species cannot be correctly described on the basis of the actually prevailing solar wind conditions.Key words. Interplanetary physics (heliopause and solar wind termination; general or miscellaneous) – Space plasma physics (experimental and mathematical techniques)


Sign in / Sign up

Export Citation Format

Share Document