scholarly journals Scutellarin-induced A549 cell apoptosis depends on activation of the transforming growth factor-β1/smad2/ROS/caspase-3 pathway

2021 ◽  
Vol 16 (1) ◽  
pp. 961-968
Author(s):  
Guang-Yan Zhang ◽  
Wei-Yong Chen ◽  
Xiao-Bo Li ◽  
Hua Ke ◽  
Xue-Lin Zhou

Abstract Scutellarin plays an anti-tumor role in A549 lung cancer cells, but the underlying mechanism is unclear. In this study, scutellarin was used to treat A549 cells for 12, 24, and 48 h, followed by the addition of Tempo, a selective scavenger of mitochondrial reactive oxygen species (ROS) and SB431542, a transforming growth factor (TGF)-β1 receptor inhibitor. A dihydroethidium fluorescence probe was used to measure the intracellular ROS level, Cell Counting Kit-8 (CCK-8) was used to detect cell viability, and flow cytometry was performed to examine apoptosis. Western blots were used to detect the total protein level of TGF-β1, p-smad2, and cleaved caspase-3 in A549 cells. The results showed that scutellarin significantly inhibited cell viability and increased apoptosis. Scutellarin also promoted intracellular ROS production, TGF-β1/smad2 signaling pathway activation, and cleaved caspase-3 expression, which was partly reversed by Tempo. Moreover, scutellarin-induced intracellular ROS production and cleaved caspase-3 expression were inhibited by blocking the TGF-β1/smad2 pathway with SB431542. In conclusion, scutellarin promoted apoptosis and intracellular ROS accumulation, which could be abrogated by Tempo and SB431542 treatment in A549 cells. Our study indicated that scutellarin induced A549 cell apoptosis via the TGF-β1/smad2/ROS/caspase-3 pathway.

2020 ◽  
Vol 40 (2) ◽  
Author(s):  
Jingjing Xie ◽  
Bo Li ◽  
Bing Yao ◽  
Pingchao Zhang ◽  
Lixin Wang ◽  
...  

Abstract Background: During disc degeneration, inflammatory cytokine tumor necrosis factor (TNF)-α is correlated with nucleus pulposus (NP) cell apoptosis. Transforming growth factor (TGF)-β1 has the potential to regenerate degenerative disc. Objective: To investigate the protective role of TGF-β1 against TNF-α-mediated NP cell apoptosis and the underlying mechanism. Methods: Rat NP cells were treated with TNF-α (100 ng/ml) for 48 h. TGF-β1 was added into the culture medium to investigate its protective effects against TNF-α-induced NP cell apoptosis. Exogenous FasL was used to investigate the potential role of the Fas/FasL pathway in this process. Flow cytometry assay was used to analyze NP cell apoptosis. Real-time PCR and Western blotting were used to analyze gene and protein expression of apoptosis-related molecules. Results: In TNF-α-treated NP cells, TGF-β1 significantly decreased NP cell apoptosis, declined caspase-3 and -8 activity, and decreased expression of Bax and caspase-3 (cleaved-caspase-3) but increased expression of Bcl-2. However, exogenous FasL partly reversed these effects of TGF-β1 in NP cells treated with TNF-α. Additionally, expression of Fas and FasL in TNF-α-treated NP cells partly decreased by TGF-β1, whereas exogenous FasL increased expression of Fas and FasL in NP cells treated with TGF-β1 and TNF-α. Conclusion: TGF-β1 helps to inhibit TNF-α-induced NP cell apoptosis and the Fas/FasL pathway may be involved in this process. The present study suggests that TGF-β1 may be effective to retard inflammation-mediated disc degeneration.


2019 ◽  
Vol 39 (12) ◽  
Author(s):  
Xi Wang ◽  
Zhe Cheng ◽  
Lingling Dai ◽  
Tianci Jiang ◽  
Liuqun Jia ◽  
...  

ABSTRACT Long noncoding RNAs (lncRNAs) are involved in various human diseases. Recently, H19 was reported to be upregulated in fibrotic rat lung and play a stimulative role in bleomycin (BLM)-induced pulmonary fibrosis in mice. However, its expression in human fibrotic lung tissues and mechanism of action remain unclear. Here, our observations showed that H19 expression was significantly upregulated and that of microRNA 140 (miR-140) was markedly reduced in pulmonary fibrotic tissues from idiopathic pulmonary fibrosis (IPF) patients and transforming growth factor β1 (TGF-β1)-induced HBE and A549 cells. Moreover, the expression of H19 was negatively correlated with the expression of miR-140 in IPF tissues. H19 knockdown attenuated TGF-β1-induced pulmonary fibrosis in vitro. Furthermore, animal experiments showed that H19 knockdown attenuated BLM-induced pulmonary fibrosis in mice. The study of molecular mechanisms showed that H19 functioned via reduction of miR-140 expression by binding to miR-140. The increase of miR-140 inhibited TGF-β1-induced pulmonary fibrosis, and H19 upregulation diminished the inhibitory effects of miR-140 on TGF-β1-induced pulmonary fibrosis, which was involved in the TGF-β/Smad3 pathway. Taken together, our findings showed that H19 knockdown attenuated pulmonary fibrosis via the regulatory network of lncRNA H19–miR-140–TGF-β/Smad3 signaling, and H19 and miR-140 might represent therapeutic targets and early diagnostic and prognostic biomarkers for patients with pulmonary fibrosis.


1998 ◽  
Vol 9 (9) ◽  
pp. 2627-2638 ◽  
Author(s):  
John S. Munger ◽  
John G. Harpel ◽  
Filippo G. Giancotti ◽  
Daniel B. Rifkin

The multipotential cytokine transforming growth factor-β (TGF-β) is secreted in a latent form. Latency results from the noncovalent association of TGF-β with its processed propeptide dimer, called the latency-associated peptide (LAP); the complex of the two proteins is termed the small latent complex. Disulfide bonding between LAP and latent TGF-β–binding protein (LTBP) produces the most common form of latent TGF-β, the large latent complex. The extracellular matrix (ECM) modulates the activity of TGF-β. LTBP and the LAP propeptides of TGF-β (isoforms 1 and 3), like many ECM proteins, contain the common integrin-binding sequence RGD. To increase our understanding of latent TGF-β function in the ECM, we determined whether latent TGF-β1 interacts with integrins. A549 cells adhered and spread on plastic coated with LAP, small latent complex, and large latent complex but not on LTBP-coated plastic. Adhesion was blocked by an RGD peptide, and cells were unable to attach to a mutant form of recombinant LAP lacking the RGD sequence. Adhesion was also blocked by mAbs to integrin subunits αv and β1. We purified LAP-binding integrins from extracts of A549 cells using LAP bound to Sepharose. αvβ1 eluted with EDTA. After purification in the presence of Mn2+, a small amount of αvβ5 was also detected. A549 cells migrated equally on fibronectin- and LAP-coated surfaces; migration on LAP was αvβ1 dependent. These results establish αvβ1 as a LAP-β1 receptor. Interactions between latent TGF-β and αvβ1 may localize latent TGF-β to the surface of specific cells and may allow the TGF-β1 gene product to initiate signals by both TGF-β receptor and integrin pathways.


2020 ◽  
Vol 10 (8) ◽  
pp. 1218-1223
Author(s):  
Xinping Chen ◽  
Zhichao Ma ◽  
Juan Zhu ◽  
Weihua Xu ◽  
Junjie Hu ◽  
...  

The aim of this study was to investigate the effect of different concentrations of novel targeted nanodrugs based on miRNA on the antitumor activity and mechanism in cervical carcinoma A549 cells. The MTT method was used to determine the effect of different concentrations of novel targeted nanodrugs based on miRNA on A549 cell proliferation, and annexin V FITC/PI double staining flow cytometry was performed to analyze the effect of these nanodrugs on A549 cell apoptosis. Western blotting was performed to observe the effect of these nanodrugs on the expression of Bax, Bcl-2, and caspase-3-related genes involved in A549 cell apoptosis. Compared with the control group, the novel targeted nanodrugs based on miRNA significantly inhibited the proliferation of A549 cells in a time- and dose-dependent manner. Results of double staining flow cytometry demonstrated that these nanodrugs could increase the apoptotic rate of A549 cells in a dose-dependent manner 48 h later. Western blotting revealed that these nanodrugs could upregulate the expression of Bax and caspase3 genes and downregulate the expression of Bcl-2 gene. Nanodrugs display an obvious antitumor activity in vitro, and the underlying mechanism may be associated with the upregulation of Bax and caspase-3 gene expression and the downregulation of Bcl-2 gene expression.


2019 ◽  
Author(s):  
Dong Hoon Suh ◽  
Sunray Lee ◽  
Hyun-Sook Park ◽  
Noh Hyun Park

AbstractThis study was performed to evaluate the anticancer effects of tolerable doses of metformin with or without medroxyprogesterone (MPA) in endometrial cancer cells. Cell viability, cell invasion, and levels of matrix metallopeptidase (MMP) and transforming growth factor (TGF)-β1 were analyzed using three human endometrial adenocarcinoma cell lines (Ishikawa, KLE, and USPC) after treatment with different dose combinations of MPA (0, 10 μM) and metformin (0, 100, 1000 μM). Combining metformin (0, 100, 1000 μM) and 10 μM MPA induced significantly decreased cell viability in a time- and dose-dependent manner in Ishikawa cells, but not in KLE and USPC cells. There was no dose- or time-dependent cell growth inhibition, or positive western blot results for the expression of progesterone receptors and phospho-AMPKa, following treatment with any combination of metformin (0, 100, 1000 μM) and 10 μM MPA in KLE and USPC cells. In KLE cells, metformin treatment alone significantly inhibited cell invasion in a dose-dependent manner (1.31±0.05, 0.94±0.04, 0.83±0.05 at 0, 100 μM, 1000 μM, respectively; p<0.0005). The inhibitory effect of metformin was reversed to create a stimulating effect when metformin was combined with 10 μM MPA (1.10±0.05, 1.42±0.18, 1.41±0.26 at 0, 100, 1000 μM, respectively; p<0.005). MMP-9 and TGF-β1 showed similar trends in terms of cell invasion in KLE cells. In conclusion, the anti-invasive effect of metformin in KLE cells was completely reversed to the state of no treatment by the addition of MPA; this might be mediated through MMP-9 and TGF-β1. Our study suggests the possibility of these combinations doing harm, rather than good, under some conditions.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Yalda Shokoohinia ◽  
Leila Hosseinzadeh ◽  
Maryam Moieni-Arya ◽  
Ali Mostafaie ◽  
Hamid-Reza Mohammadi-Motlagh

Doxorubicin (DOX) is a potent, broad-spectrum chemotherapeutic drug used for treatment of several types of cancers. Despite its effectiveness, it has a wide range of toxic side effects, many of which most likely result from its inherent prooxidant activity. It has been reported that DOX has toxic effects on normal tissues, including brain tissue. In the current study, we investigated the protective effect of osthole isolated fromPrangos ferulacea(L.) Lindl. on oxidative stress and apoptosis induced by DOX in PC12 as a neuronal model cell line. PC12 cells were pretreated with osthole 2 h after treatment with different concentrations of DOX. 24 h later, the cell viability, mitochondrial membrane potential (MMP), the activity of caspase-3, the expression ratio of Bax/Bcl-2, and the generation of intracellular ROS were detected. We found that pretreatment with osthole on PC12 cells significantly reduced the loss of cell viability, the activity of caspase-3, the increase in Bax/Bcl-2 ratio, and the generation of intracellular ROS induced by DOX. Moreover, pretreatment with osthole led to an increase in MMP in PC12 cells. In conclusion, our results indicated that pretreatment with nontoxic concentrations of osthole protected PC12 cells from DOX-mediated apoptosis by inhibition of ROS production.


2001 ◽  
Vol 194 (4) ◽  
pp. 439-454 ◽  
Author(s):  
WanJun Chen ◽  
Wenwen Jin ◽  
Hongsheng Tian ◽  
Paula Sicurello ◽  
Mark Frank ◽  
...  

Transforming growth factor (TGF)-β1, a potent immunoregulatory molecule, was found to control the life and death decisions of T lymphocytes. Both thymic and peripheral T cell apoptosis was increased in mice lacking TGF-β1 (TGF-β1−/−) compared with wild-type littermates. Engagement of the T cell receptor enhanced this aberrant T cell apoptosis, as did signaling through either the death receptor Fas or the tumor necrosis factor α receptor in peripheral T cells. Strikingly, TGF-β was localized within the mitochondria of normal T cells, and the absence of TGF-β1 resulted in disruption of mitochondrial membrane potential (Δψm), which marks the point of no return in a cell condemned to die. This TGF-β–dependent regulation of viability appears dissociable from the TGF-β1 membrane receptor–Smad3 signaling pathway, but associated with a mitochondrial antiapoptotic protein Bcl–XL. Thus, TGF-β1 may protect T cells at multiple sites in the death pathway, particularly by maintaining the essential integrity of mitochondria. These findings may have broad implications not only for T cell selection and death in immune responses and in the generation of tolerance, but also for defining the mechanisms of programmed cell death in general.


2020 ◽  
Vol 48 (7) ◽  
pp. 030006052092635
Author(s):  
Tongxin Sun ◽  
Dai Yang ◽  
Yuanpeng Wu ◽  
Qingang Sheng

Background The underlying mechanism of micro (mi)RNA-211 in bone cell apoptosis after fracture remains unclear. This study aimed to determine the effect and function of miRNA-211 in bone cell apoptosis in fracture patients. Methods Serum samples were collected from patients with fractures and healthy controls. Serum miR-211 expression was detected by quantitative PCR. MC3T3-E1 cells were transfected with a transforming growth factor (TGF)-β inhibitor and phosphoinositide 3-kinase (PI3K) inhibitor. The viability of MC3T3-E1 cells was detected by the MTT assay, and apoptosis was detected by flow cytometry. Caspase-3/9 activity and the protein expression of TGF-β, PI3K, and p-Akt were detected by western blot and immunoprecipitation. Results In the fracture group, miRNA-211 expression was significantly up-regulated compared with controls. We used miRNA-211 mimics to up-regulate miRNA-211 expression, and observed inhibited cell viability and induced apoptosis and lactate dehydrogenase (LDH) activity. miRNA-211 up-regulation also suppressed the expression of TGF-β, PI3K, and p-Akt proteins. Conversely, miRNA-211 down-regulation increased cell viability and reduced apoptosis and LDH activity, as well as inducing the expression of TGF-β, PI3K, and p-Akt. Inhibiting TGF-β decreased the effect of anti-miRNA-211 on osteocyte apoptosis. Conclusion Our data indicate that miRNA-211 functions via the TGF-β/PI3K/Akt signaling pathway in patients with fractures.


Sign in / Sign up

Export Citation Format

Share Document