scholarly journals A Novel Insight into Functional Divergence of the MST Gene Family in Rice Based on Comprehensive Expression Patterns

Genes ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 239 ◽  
Author(s):  
Xiaolong Deng ◽  
Baoguang An ◽  
Hua Zhong ◽  
Jing Yang ◽  
Weilong Kong ◽  
...  

Sugars are critical for plant growth and development as suppliers of carbon and energy, as signal molecules, or as solute molecules for osmotic homeostasis. Monosaccharide transporter (MST) genes are involved in various processes of plant growth and development as well as in response to abiotic stresses. However, the evolution and their roles of MST genes in growth and development and in coping with abiotic stresses in rice are poorly known. Here, we identified 64 MST genes in rice genome, which are classified into seven subfamilies: STP, PLT, AZT, ERD, pGlcT, INT, and XTPH. MST genes are not evenly distributed between chromosomes (Chrs) with a bias to Chr 3, 4, 7, and 11, which could be a result of duplication of fragments harboring MST genes. In total, 12 duplication events were found in the rice MST family, among which, two pairs were derived from fragmental duplications and ten pairs were from tandem duplications. The synonymous and nonsynonymous substitution rates of duplicate gene pairs demonstrated that the MST family was under a strong negative selection during the evolution process. Furthermore, a comprehensive expression analysis conducted in 11 different tissues, three abiotic stresses, five hormone treatments, and three sugar treatments revealed different expression patterns of MST genes and indicated diversified functions of them. Our results suggest that MST genes play important roles not only in various abiotic stresses but also in hormone and sugar responses. The present results will provide a vital insight into the functional divergence of the MST family in the future study.

Biologia ◽  
2015 ◽  
Vol 70 (6) ◽  
Author(s):  
Yamilet Coll ◽  
Francisco Coll ◽  
Asunción Amorós ◽  
Merardo Pujol

AbstractBrassinosteroids are plant steroidal compounds involved in many functions related with plant development, metabolism, signalling and defense against a wide range of biotic and abiotic stresses. Plant architecture, which has a major effect on crop yield, is strongly influenced by brassinosteroids action. Brassinosteroids are recognized as key regulators of plant growth and development involved in a broad spectrum of processes at the molecular, cellular, and physiological levels. These roles suggest that many of the constraints of present agricultural production might be alleviated by manipulation of genetic determinants dealing with brassinosteroids, as well as by its exogenous application. Brassinosteroids are natural, nontoxic, non-genotoxic, biosafe, and eco-friendly, and can therefore be used in agriculture and horticulture to improve the growth, yields, quality, and tolerance of various plants to biotic and abiotic stresses. The present paper comprehensively reviews the latest results in the field of brassinosteroids and envisages future impacts in agriculture.


2021 ◽  
Vol 11 ◽  
Author(s):  
Qiaoying Pei ◽  
Nan Li ◽  
Qihang Yang ◽  
Tong Wu ◽  
Shuyan Feng ◽  
...  

The family Apiaceae includes many important vegetables and medicinal plants. Auxin response factors (ARFs) play critical roles in regulating plant growth and development. Here, we performed a comprehensive analysis of the ARF gene family in three Apiaceae species, celery, coriander, and carrot, and compared the results with the ARF gene family of lettuce, Arabidopsis, and grape. We identified 156 ARF genes in all six species and 89 genes in the three Apiaceae species, including 28, 34, and 27 in celery, coriander, and carrot, respectively. The paralogous gene number in coriander was far greater than that in carrot and celery. Our analysis revealed that ARF genes of the three Apiaceae species in 34 branches of the phylogenetic tree underwent significant positive selection. Additionally, our findings indicated that whole-genome duplication played an important role in ARF gene family expansion. Coriander contained a greater number of ARF genes than celery and carrot because of more gene duplications and less gene losses. We also analyzed the expression of ARF genes in three tissues by RNA-seq and verified the results by quantitative real-time PCR. Furthermore, we found that several paralogous genes exhibited divergent expression patterns. Overall, this study provides a valuable resource for exploring how ARF family genes regulate plant growth and development in other plants. Since this is the first report of the ARF gene family in Apiaceae, our results will serve as a guide for comparative and functional analyses of ARF and other gene families in Apiaceae.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Khadiza Khatun ◽  
Sourav Debnath ◽  
Arif Hasan Khan Robin ◽  
Antt Htet Wai ◽  
Ujjal Kumar Nath ◽  
...  

Abstract Background CONSTANS-like (CO-like, COL) are putative zinc-finger transcription factors known to play vital role in various plant biological processes such as control of flowering time, regulation of plant growth and development and responses to stresses. However, no systematic analysis of COL family gene regarding the plant development and stress response has been previously performed in any solanaceous crop. In the present study, a comprehensive genome-wide analysis of COL family genes in petunia has been conducted to figure out their roles in development of organs and stress response. Results A total of 33 COL genes, 15 PaCOL genes in P. axillaris and 18 PiCOL genes in P. inflata, were identified in petunia. Subsequently, a genome-wide systematic analysis was performed in 15 PaCOL genes. Considering the domain composition and sequence similarity the 15 PaCOL and 18 PiCOL genes were phylogenetically classified into three groups those are conserved among the flowering plants. Moreover, all of the 15 PaCOL proteins were localized in nucleus. Furthermore, differential expression patterns of PaCOL genes were observed at different developmental stages of petunia. Additionally, transcript expression of 15 PaCOL genes under various abiotic and phytohormone treatments showed their response against stresses. Moreover, several cis-elements related to stress, light-responsive, hormone signaling were also detected in different PaCOL genes. Conclusion The phylogenetic clustering, organ specific expression pattern and stress responsive expression profile of conserved petunia COL genes indicating their involvement in plant growth and development and stress response mechanism. This work provide a significant foundation for understanding the biological roles of petunia COL genes in plant growth, development and in stress response.


2019 ◽  
Vol 20 (24) ◽  
pp. 6270 ◽  
Author(s):  
Tao Yang ◽  
Yuke Lian ◽  
Chongying Wang

Strigolactones (SLs) and karrikins (KARs) are both butenolide molecules that play essential roles in plant growth and development. SLs are phytohormones, with SLs having known functions within the plant they are produced in, while KARs are found in smoke emitted from burning plant matter and affect seeds and seedlings in areas of wildfire. It has been suggested that SL and KAR signaling may share similar mechanisms. The α/β hydrolases DWARF14 (D14) and KARRIKIN INSENSITIVE 2 (KAI2), which act as receptors of SL and KAR, respectively, both interact with the F-box protein MORE AXILLARY GROWTH 2 (MAX2) in order to target SUPPRESSOR OF MAX2 1 (SMAX1)-LIKE/D53 family members for degradation via the 26S proteasome. Recent reports suggest that SLs and/or KARs are also involved in regulating plant responses and adaptation to various abiotic stresses, particularly nutrient deficiency, drought, salinity, and chilling. There is also crosstalk with other hormone signaling pathways, including auxin, gibberellic acid (GA), abscisic acid (ABA), cytokinin (CK), and ethylene (ET), under normal and abiotic stress conditions. This review briefly covers the biosynthetic and signaling pathways of SLs and KARs, compares their functions in plant growth and development, and reviews the effects of any crosstalk between SLs or KARs and other plant hormones at various stages of plant development. We also focus on the distinct responses, adaptations, and regulatory mechanisms related to SLs and/or KARs in response to various abiotic stresses. The review closes with discussion on ways to gain additional insights into the SL and KAR pathways and the crosstalk between these related phytohormones.


2020 ◽  
Vol 21 (13) ◽  
pp. 4593 ◽  
Author(s):  
Lijuan Xuan ◽  
Jian Li ◽  
Xinyu Wang ◽  
Chongying Wang

Hydrogen sulfide (H2S), once recognized only as a poisonous gas, is now considered the third endogenous gaseous transmitter, along with nitric oxide (NO) and carbon monoxide (CO). Multiple lines of emerging evidence suggest that H2S plays positive roles in plant growth and development when at appropriate concentrations, including seed germination, root development, photosynthesis, stomatal movement, and organ abscission under both normal and stress conditions. H2S influences these processes by altering gene expression and enzyme activities, as well as regulating the contents of some secondary metabolites. In its regulatory roles, H2S always interacts with either plant hormones, other gasotransmitters, or ionic signals, such as abscisic acid (ABA), ethylene, auxin, CO, NO, and Ca2+. Remarkably, H2S also contributes to the post-translational modification of proteins to affect protein activities, structures, and sub-cellular localization. Here, we review the functions of H2S at different stages of plant development, focusing on the S-sulfhydration of proteins mediated by H2S and the crosstalk between H2S and other signaling molecules.


2020 ◽  
Author(s):  
Huanhuan Wu ◽  
Lei Zheng ◽  
Ghulam Qanmber ◽  
Mengzhen Guo ◽  
Zhi Wang ◽  
...  

Abstract Background: The sequencing and annotations of cotton genomes provide powerful theoretical support to unravel more physiological and functional information. Plant homeodomain (PHD) protein family has been reported to be involved in regulating various biological processes in plants. However, their functional studies have not yet been carried out in cotton. Results: In this study, 108, 55, and 52 PHD genes were identified in G. hirsutum, G. raimondii, and G. arboreum, respectively. A total of 297 PHD genes from three cotton species, Arabidopsis, and rice were divided into five groups. We performed chromosomal location, phylogenetic relationship, gene structure, and conserved domain analysis for GhPHD genes. GhPHD genes were unevenly distributed on each chromosome, however, more GhPHD genes were distributed on At_05, Dt_05, and At_07 chromosomes. GhPHD proteins depicted conserved domains, and GhPHD genes exhibiting similar gene structure were clustered together. Further, whole genome duplication analysis indicated that purification selection greatly contributed to the functional maintenance of GhPHD gene family. Expression pattern analysis based on RNA-seq data showed that most GhPHD genes showed clear tissue-specific spatiotemporal expression patterns elucidating the multiple functions of GhPHDs in plant growth and development. Moreover, analysis of cis-acting elements revealed that GhPHDs may respond to a variety of abiotic and phytohormonal stresses. In this regard, some GhPHD genes showed good response against abiotic and phytohormonal stresses. Additionally, co-expression network analysis indicated that GhPHDs are essential for plant growth and development, while GhPHD genes response against abiotic and phytohormonal stresses may help to improve plant tolerance in adverse environmental conditions. Conclusion: This study will provide useful information to facilitate further research related to the vital roles of GhPHD gene family in plant growth and development.


2022 ◽  
Vol 55 (1) ◽  
Author(s):  
Canhong Gao ◽  
Kun Gao ◽  
Huixian Yang ◽  
Tangdan Ju ◽  
Jingyi Zhu ◽  
...  

Abstract Background Maize (Zea mays L.) is a widely cultivated cereal and has been used as an optimum heavy metal phytoremediation crop. Metallothionein (MT) proteins are small, cysteine-rich, proteins that play important roles in plant growth and development, and the regulation of stress response to heavy metals. However, the MT genes for maize have not been fully analyzed so far. Methods The putative ZmMT genes were identified by HMMER.The heat map of ZmMT genes spatial expression analysis was generated by using R with the log2 (FPKM + 1).The expression profiles of ZmMT genes under three kinds of heavy metal stresses were quantified by using qRT-PCR. The metallothionein proteins was aligned using MAFFT and phylogenetic analysis were constructed by ClustalX 2.1. The protein theoretical molecular weight and pI, subcellular localization, TFs binding sites, were predicted using ProtParam, PSORT, PlantTFDB, respectively. Results A total of 9 ZmMT genes were identified in the whole genome of maize. The results showed that eight of the nine ZmMT proteins contained one highly conserved metallothio_2 domain, while ZmMT4 contained a Metallothio_PEC domain. All the ZmMT proteins could be classified into three major groups and located on five chromosomes. The ZmMT promoters contain a large number of hormone regulatory elements and hormone-related transcription factor binding sites. The ZmMT genes exhibited spatiotemporal specific expression patterns in 23 tissues of maize development stages and showed the different expression patterns in response to Cu, Cd, and Pb heavy metal stresses. Conclusions We identified the 9 ZmMT genes, and explored their conserved motif, tissue expression patterns, evolutionary relationship. The expression profiles of ZmMT genes under three kinds of heavy metal stresses (Cu, Cd, Pb) were analyzed. In summary, the expression of ZmMTs have poteintial to be regulated by hormones. The specific expression of ZmMTs in different tissues of maize and the response to different heavy metal stresses are revealed that the role of MT in plant growth and development, and stress resistance to heavy metals.


1993 ◽  
Vol 4 (4) ◽  
pp. 651-658 ◽  
Author(s):  
Jurgen Schmidt ◽  
Horst Rohrig ◽  
Michael John ◽  
Ursula Wieneke ◽  
Gary Stacey ◽  
...  

2020 ◽  
Author(s):  
Huanhuan Wu ◽  
Lei Zheng ◽  
Ghulam Qanmber ◽  
Mengzhen Guo ◽  
Zhi Wang ◽  
...  

Abstract Background: The sequencing and annotations of cotton genomes provide powerful theoretical support to unravel more physiological and functional information. Plant homeodomain (PHD) protein family has been reported to be involved in regulating various biological processes in plants. However, their functional studies have not yet been carried out in cotton.Results: In this study, 108, 55, and 52 PHD genes were identified in G. hirsutum, G. raimondii, and G. arboreum, respectively. A total of 297 PHD genes from three cotton species, Arabidopsis, and rice were divided into five groups. We performed chromosomal location, phylogenetic relationship, gene structure, and conserved domain analysis for GhPHD genes. GhPHD genes were unevenly distributed on each chromosome. However, more GhPHD genes were distributed on At_05, Dt_05, and At_07 chromosomes. GhPHD proteins depicted conserved domains, and GhPHD genes exhibiting similar gene structure were clustered together. Further, whole genome duplication (WGD) analysis indicated that purification selection greatly contributed to the functional maintenance of GhPHD gene family. Expression pattern analysis based on RNA-seq data showed that most GhPHD genes showed clear tissue-specific spatiotemporal expression patterns elucidating the multiple functions of GhPHDs in plant growth and development. Moreover, analysis of cis-acting elements revealed that GhPHDs may respond to a variety of abiotic and phytohormonal stresses. In this regard, some GhPHD genes showed good response against abiotic and phytohormonal stresses. Additionally, co-expression network analysis indicated that GhPHDs are essential for plant growth and development, while GhPHD genes response against abiotic and phytohormonal stresses may help to improve plant tolerance in adverse environmental conditions.Conclusion: This study will provide useful information to facilitate further research related to the vital roles of GhPHD gene family in plant growth and development.


2021 ◽  
Vol 14 (2) ◽  
pp. 5-18
Author(s):  
I. V. Kosakivska ◽  

Background. Gibberellins (GAs), a class of diterpenoid phytohormones, play an important role in regulation of plant growth and development. Among more than 130 different gibberellin molecules, only a few are bioactive. GA1, GA3, GA4, and GA7 regulate plant growth through promotion the degradation of the DELLA proteins, a family of nuclear growth repressors – negative regulator of GAs signaling. Recent studies on GAs biosynthesis, metabolism, transport, and signaling, as well as crosstalk with other phytohormones and environment have achieved great progress thanks to molecular genetics and functional genomics. Aim. In this review, we focused on the role of GAs in regulation of plant gtowth in abiotic stress conditions. Results. We represented a key information on GAs biosynthesis, signaling and functional activity; summarized current understanding of the crosstalk between GAs and auxin, cytokinin, abscisic acid and other hormones and what is the role of GAs in regulation of adaptation to drought, salinization, high and low temperature conditions, and heavy metal pollution. We emphasize that the effects of GAs depend primarily on the strength and duration of stress and the phase of ontogenesis and tolerance of the plant. By changing the intensity of biosynthesis, the pattern of the distribution and signaling of GAs, plants are able to regulate resistance to abiotic stress, increase viability and even avoid stress. The issues of using retardants – inhibitors of GAs biosynthesis to study the functional activity of hormones under abiotic stresses were discussed. Special attention was focused on the use of exogenous GAs for pre-sowing priming of seeds and foliar treatment of plants. Conclusion. Further study of the role of gibberellins in the acquisition of stress resistance would contribute to the development of biotechnology of exogenous use of the hormone to improve growth and increase plant yields under adverse environmental conditions.


Sign in / Sign up

Export Citation Format

Share Document