scholarly journals Gasification of Glycerol Over Ni/γ-Al2O3 For Hydrogen Production: Tailoring Catalytic Properties to Control Deactivation

2020 ◽  
Vol 7 (1) ◽  
pp. 65-74
Author(s):  
Ahmed Umar ◽  
John T.S. Irvine

AbstractThe effects of catalyst loading, calcination and reaction temperatures on the structural properties and catalytic behavior of Ni/γ-Al2O3 catalyst system in relation to steam reforming of glycerol and catalyst deactivation were investigated. The results showed that catalyst loading, reaction and calcination temperatures had a profound influence on the structure and catalytic activity in glycerol conversion. Use of high calcination temperature (900-1000 °C) led to phase transformation of the active Ni/Al2O3 to less active spinel specie NiAl2O4 that resulted in a successive change of texture and color. The particle size growth and phase change at this temperature were responsible for the catalyst deactivation and low performance especially among the catalyst calcined at high temperatures. Conversely, at low reaction temperatures, catalyst surfaces were marred by carbon deposition. Whilethe polymeric carbon deposited at metal-support interface was associated with low reaction temperatures, high reaction temperatures were characterized predominantly by both amorphous carbon deposited on the active metal surface and polymeric or graphitic carbon deposited at metal-support interface respectively. Calcination temperature showed no significant influence on the location and type of coke deposited on the catalyst surface. Hence, catalyst loading, calcination and reaction temperatures could be tailored to enhance structural and catalytic properties and guard against catalyst deactivation.

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 579
Author(s):  
Sang-Ho Chung ◽  
Adrian Ramirez ◽  
Tuiana Shoinkhorova ◽  
Ildar Mukhambetov ◽  
Edy Abou-Hamad ◽  
...  

The Lebedev process, in which ethanol is catalytically converted into 1,3-butadiene, is an alternative process for the production of this commodity chemical. Silica–magnesia (SiO2–MgO) is a benchmark catalyst for the Lebedev process. Among the different preparation methods, the SiO2–MgO catalysts prepared by wet-kneading typically perform best owing to the surface magnesium silicates formed during wet-kneading. Although the thermal treatment is of pivotal importance as a last step in the catalyst preparation, the effect of the calcination temperature of the wet-kneaded SiO2–MgO on the Lebedev process has not been clarified yet. Here, we prepared and characterized in detail a series of wet-kneaded SiO2–MgO catalysts using varying calcination temperatures. We find that the thermal treatment largely influences the type of magnesium silicates, which have different catalytic properties. Our results suggest that the structurally ill-defined amorphous magnesium silicates and lizardite are responsible for the production of ethylene. Further, we argue that forsterite, which has been conventionally considered detrimental for the formation of ethylene, favors the formation of butadiene, especially when combined with stevensite.


2017 ◽  
Vol 888 ◽  
pp. 518-523
Author(s):  
Noraini Hamzah ◽  
Wan Zurina Samad ◽  
Mohd Ambar Yarmo

Selective catalytic hydrogenolysis of glycerol on Os/bentonite catalyst represents a low cost and green route for 1,2-propanediol which is major commonity chemical used in the production of antifreeze functional fluids, paints and humectants. The experimental results combined with the characterization studies using TPR, FESEM-EDX and XPS techiniques revealed that the optimum calcination temperature was 300 °C with glycerol conversion obtained was 80.7%. This might be due to the presense of Os metal species as a active site with binding energy (BE) of Os 4f at 51.2 eV in XPS analysis. TPR profile also shows two obvious peak at reduction temperature of 95 °C and 140 °C represent for Os3+ and Os4+ species respectively. The presence of Os3+ and Os4+ species were also confirmed by XPS analysis.


2019 ◽  
pp. 96-105
Author(s):  
M. L. Shishkova ◽  
N. V. Yakovleva

The paper considers science and engineering aspects of catalytically active compositions creation as regards immobilized catalysts for reforming hydrocarbon raw materials into hydrogen fuel. The authors investigate synthesis of catalytic powder mixtures and manufacturing of functional coatings by supersonic cold gas dynamic spraying. Research results in the field of creation of catalysts for steam conversion of methane to hydrogenous fuel on the metal support (Cr15Al15 tape support) are given. Composite powder mixtures (Ni–Al–Al(OH)3– Ca(OH)2–Mg(OH)2) were used as starting materials.


2015 ◽  
Vol 29 (01) ◽  
pp. 1450254 ◽  
Author(s):  
M. Shayani Rad ◽  
A. Kompany ◽  
A. Khorsand Zak ◽  
M. E. Abrishami

Pure and silver added zinc oxide nanoparticles ( ZnO -NPs and ZnO : Ag -NPs) were synthesized through a modified sol–gel method. The prepared samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy. In the XRD patterns, silver diffracted peaks were also observed for the samples synthesized at different calcination temperatures of 500°C, 700°C, 900°C except 1100°C, in addition to ZnO . TEM images indicated that the average size of ZnO : Ag -NPs increases with the amount of Ag concentration. The PL spectra of the samples revealed that the increase of Ag concentration results in the increase of the visible emission intensity, whereas by increasing the calcination temperature the intensity of visible emission of the samples decreases.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Panya Khaenamkaew ◽  
Dhonluck Manop ◽  
Chaileok Tanghengjaroen ◽  
Worasit Palakawong Na Ayuthaya

The electrical properties of tin dioxide (SnO2) nanoparticles induced by low calcination temperature were systematically investigated for gas sensing applications. The precipitation method was used to prepare SnO2 powders, while the sol-gel method was adopted to prepare SnO2 thin films at different calcination temperatures. The characterization was done by X-ray diffraction, scanning electron microscopy (SEM), and atomic force microscopy (AFM). The samples were perfectly matched with the rutile tetragonal structure. The average crystallite sizes of SnO2 powders were 45 ± 2, 50 ± 2, 62 ± 2, and 65 ± 2 nm at calcination temperatures of 300, 350, 400, and 450°C, respectively. SEM images and AFM topographies showed an increase in particle size and roughness with the rise in calcination temperature. The dielectric constant decreased with the increase in the frequency of the applied signals but increased on increasing calcination temperature. By using the UV-Vis spectrum, the direct energy bandgaps of SnO2 thin films were found as 4.85, 4.80, 4.75, and 4.10 eV for 300, 350, 400, and 450°C, respectively. Low calcination temperature as 300°C allows smaller crystallite sizes and lower dielectric constants but increases the surface roughness of SnO2, while lattice strain remains independent. Thus, low calcination temperatures of SnO2 are promising for electronic devices like gas sensors.


Paliva ◽  
2020 ◽  
pp. 155-161
Author(s):  
Tomáš Hlinčík ◽  
Veronika Šnajdrová ◽  
Veronika Kyselová

Alumina is commonly used in industrial practice as a catalyst support and it is made from boehmite. Depending on the calcination temperature, this mineral is transformed into various crystalline modifications which have different physical and chemical properties. For this reason, the following parameters were determined at different calcination temperatures: length, width, material hardness, specific surface area and total pore volume. The results show that with increasing calcination temperature there have been significant changes which may be important when using the material as a catalyst support, e.g. in the preparation of catalysts or in the design of cat-alytic reactors. The specific surface area, which decreases in the temperature range 450–800 °C, is an important parameter for the preparation of catalysts, so it is appropriate to choose a temperature of 600 °C, when the specific surface area is above 200 m2·g-1. The effect of calcination temperature on the structural transitions of boehmite was also monitored. The results showed that γ-Al2O3 has the most suitable properties as a catalyst sup-port in the temperature range 450–800 °C.


2015 ◽  
Vol 50 (1) ◽  
pp. 21-28 ◽  
Author(s):  
F Hassan ◽  
MS Miran ◽  
HA Simol ◽  
MAB H Susan ◽  
MYA Mollah

ZnO nanoparticles (NPs) with size less than 100 nm were successfully prepared by a hybrid electrochemical-thermal method using metallic zinc and NaHCO3 without the use of any zinc salt, template or surfactant. The NPs were characterized by Fourier transform infra-red (FT-IR) spectroscopy, UV-visible spectroscopy, photoluminescence spectroscopy (PL), thermo-gravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. UV-visible spectral analysis indicated that the particle size increased with increasing calcination temperature. The band gap (3.91-3.83 eV) was higher for synthesized ZnO NPs than their bulk counterparts (3.37 eV). The FT-IR spectra at different calcination temperatures showed the characteristic band for ZnO at 450 cm-1 to be prominent with increasing temperature due to the conversion of precursor into ZnO. The wurtzite hexagonal phase was confirmed by XRD analyses for ZnO NPs calcined at 700oC. The green photoluminescent emission from ZnO NPs at different calcination temperatures is considered to be originated from the oxygen vacancy or interstitial related defects in ZnO. SEM images clearly showed that the NPs are granular and of almost uniform size when calcined at higher temperatures. EDX spectra further confirmed the elemental composition and purity of ZnO obtained on calcination at 700oC. The NPs are well dispersed near or above calcination temperature of 700oC.Bangladesh J. Sci. Ind. Res. 50(1), 21-28, 2015


2022 ◽  
Author(s):  
Shradha Gandhi ◽  
Rupinder Kaur ◽  
Vandana Sharma ◽  
Sanjay Mandal

Diverse ZnO nanostructures (ZnO_1 to ZnO_3) were synthesized by direct calcination of a chiral MOF precursor {[Zn4(µ3-OH)2(D-2,4-cbs)2(H2O)4].5H2O}n (Zn-CBS) at three different temperatures 600, 700 and 800 oC, respectively. On the...


Catalysts ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 347 ◽  
Author(s):  
Wenjun Liang ◽  
Xiaoyan Du ◽  
Yuxue Zhu ◽  
Sida Ren ◽  
Jian Li

A series of Pd-TiO2/Pd-Ce/TiO2 catalysts were prepared by an equal volume impregnation method. The effects of different Pd loadings on the catalytic activity of chlorobenzene (CB) were investigated, and the results showed that the activity of the 0.2%-0.3% Pd/TiO2 catalyst was optimal. The effect of Ce doping enhanced the catalytic activity of the 0.2% Pd-0.5% Ce/TiO2 catalyst. The characterization of the catalysts using BET, TEM, H2-TPR, and O2-TPD showed that the oxidation capacity was enhanced, and the catalytic oxidation efficiency was improved due to the addition of Ce. Ion chromatography and Gas Chromatography-Mass Spectrometer results showed that small amounts of dichlorobenzene (DCB) and trichlorobenzene (TCB) were formed during the decomposition of CB. The results also indicated that the calcination temperature greatly influenced the catalyst activity and a calcination temperature of 550 °C was the best. The concentration of CB affected its decomposition, but gas hourly space velocity had little effect. H2-TPR indicated strong metal–support interactions and increased dispersion of PdO in the presence of Ce. HRTEM data showed PdO with a characteristic spacing of 0.26 nm in both 0.2% Pd /TiO2 and 0.2% Pd-0.5% Ce/TiO2 catalysts. The average sizes of PdO nanoparticles in the 0.2% Pd/TiO2 and 0.2% Pd-0.5% Ce/TiO2 samples were 5.8 and 4.7 nm, respectively. The PdO particles were also deposited on the support and they were separated from each other in both catalysts.


2019 ◽  
Vol 3 (1) ◽  
pp. 18 ◽  
Author(s):  
Md. Molla ◽  
Mai Furukawa ◽  
Ikki Tateishi ◽  
Hideyuki Katsumata ◽  
Satoshi Kaneco

Ag-doped ZnO nanocomposites are successfully synthesized at different calcination temperatures and times through a simple, effective, high-yield and low-cost mechanochemical combustion technique. Effects of calcination temperature on the crystallinity and optical properties of Ag/ZnO nanocomposites have been studied by X-ray diffraction (XRD), UV−visible diffuse reflectance spectroscopy (UV-DRS), photoluminescence spectroscopy (PL) and X-ray photoelectron spectroscopy (XPS). The XRD patterns of the synthesized Ag/ZnO exhibit a well-crystalline wurtzite ZnO crystal structure. The grain size of Ag/ZnO nanocomposites is found to be 19 and 46 nm at calcination temperatures of 400 °C and 700 °C, respectively. The maximum absorption in the UV region is obtained for Ag/ZnO nanocomposites synthesized at a calcination temperature of 500 °C for 3 h. The peak position of blue emissions is almost the same for the nanocomposites obtained at 300–700 °C calcination temperatures. The usual band edge emission in the UV is not obtained at 330 nm excitation. Band edge and blue band emissions are observed for the use of low excitation energy at 335–345 nm.


Sign in / Sign up

Export Citation Format

Share Document