Design and simulation of piezoelectric nano cylindrical hollow structure for energy harnessing applications

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Naveen Tyagi ◽  
Aparna N. Mahajan ◽  
Anshu Mli Gaur

Abstract This article investigates piezoelectric materials for harnessing vibrational energy. A nano hollow cylindrical structure based on various piezoelectric materials was designed and utilised to generate the voltage. An accurate and efficient model is developed here, so as to optimized the efficiency of the piezoelectric energy harvester. This work analyses the piezoelectric actuator deflection and involves the Eigen frequency computation. A measurement methodology for investigating the mechanical and electrical behaviour of vibrational harvester's was modelled and analysed by finite element method using COMSOL software. The energy harvesting structure was developed and tested with different piezoelectric materials to attain appreciable voltage through a small deflection. The Simulated results predicts that for the same pressure range, different piezoelectric materials have the different output voltage and Eigen frequencies. The maximum voltage was observed for Barium Titanate (3.0847 V at 250 µm), along with poled Polyvinylidene fluoride. In addition, a comparison was made with different piezoelectric materials ideally suited to intelligent cantilever structure. For optimizing the performance of the piezoelectric energy harvester an accurate and efficient model is required, which was developed in this simulation study. A high voltage value with a small deflection through a cylindrical hollow structure was designed and tested using various piezoelectric materials in this study.

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1537
Author(s):  
Neetu Kumari ◽  
Micky Rakotondrabe

In recent years, energy harvesting from ambient vibrations using piezoelectric materials has become the center of attention due to the fact that it has the potential to replace batteries, providing an easy way to power wireless and low power sensors and electronic devices. Piezoelectric material has been extensively used in energy harvesting technologies. However, the most commercially available and widely used piezoelectric materials are lead-based, Pb [ZrxTi1−x] O3 (PZT), which contains more than 60 weight percent lead (Pb). Due to its extremely hazardous effects on lead elements, there is a strong need to substitute PZT with new lead-free materials that have comparable properties to those of PZT. Lead-free lithium niobate (LiNbO3) piezoelectric material can be considered as a substitute for lead-based piezoelectric materials for vibrational energy scavenging applications. LiNbO3 crystal has a lower dielectric constant comparison to the conventional piezoceramics (for instance, PZT); however, at the same time, LiNbO3 (LN) single crystal presents a figure of merits similar to that of PZT, which makes it the most suitable choice for a vibrational energy harvester based on lead-free materials. The implementation was carried out using a global optimization approach including a thick single-crystal film on a metal substrate with optimized clamped capacitance for better impedance matching conditions. A lot of research shows that standard designs such as linear piezoelectric energy harvesters are not a prominent solution as they can only operate in a narrow bandwidth because of their single high resonant peak in their frequency spectrum. In this paper, we propose, and experimentally validate, a novel lead-free piezoelectric energy harvester to harness electrical energy from wideband, low-frequency, and low-amplitude ambient vibration. To reach this target, the harvester is designed to combine multi-frequency and nonlinear techniques. The proposed energy harvesting system consists of six piezoelectric cantilevers of different sizes and different resonant frequencies. Each is based on lead-free lithium niobate piezoelectric material coupled with a shape memory alloy (nitinol) substrate. The design is in the form of a circular ring to which the cantilevers are embedded to create nonlinear behavior when excited with ambient vibrations. The finite element simulation and the experimental results confirm that the proposed lead-free harvester design is efficient at low frequencies, particularly different frequencies below 250 Hz.


2019 ◽  
Vol 8 (2) ◽  
pp. 443-449 ◽  
Author(s):  
Norfaizul Izwan Nordin ◽  
Rosminazuin Ab Rahim ◽  
Aliza Aini Md Ralib

This aim of this paper is to study the potential of Polyvinylidene Fluoride (PVDF) polymeric piezoelectric film as an energy harvester for daily application use. PVDF offers several advantages over other piezoelectric materials such as high chemical strength and stability, high piezoelectric properties and biocompatible. Several investigations were carried out in this project which comprises of simulation, functionality test and application test. For functionality test, the highest voltage produced for a single film PVDF is 0.368 V which charges up a capacitor to 0.219 V in one minute. The highest voltage produced by multiple PVDF films is 1.238 V by stacking 10 films of PVDF in parallel which charges up to 0.688 V in one minute. For application test, 5 pieces of PVDF films were attached to a glove to generate some voltage during fingers bending activity. The highest output voltage recorded is 0.184 V which stores 0.101 V in a capacitor after 200 times of hand bending and releasing. As a conclusion, PVDF has a good potential as an alternative energy for daily application use. Combination of PVDF energy harvester system with proper power optimization circuit will open up rooms of research opportunities in energy harvester system with promising prospect in self-powered wireless electronics devices for Internet of Things application.


2017 ◽  
Vol 24 (19) ◽  
pp. 4484-4491 ◽  
Author(s):  
R Tikani ◽  
L Torfenezhad ◽  
M Mousavi ◽  
S Ziaei-Rad

Nowadays, environmental energy resources, especially mechanical vibrations, have attracted the attention of researchers to provide energy for low-power electronic circuits. A common method for environmental mechanical energy harvesting involves using piezoelectric materials. In this study, a spiral multimode piezoelectric energy harvester was designed and fabricated. To achieve wide bandwidth in low frequencies (below 15 Hz), the first three resonance frequencies of the beam were designed to be close to each other. To do this, the five lengths of the substrate layer were optimized by the Taguchi method, using an L27 orthogonal array. Each experiment of the Taguchi method was then simulated in ANSYS software. Next, the optimum level of each design variable was obtained. A test rig was then constructed based on the optimum design values and some experimental investigations were conducted. A good correlation was observed between measured and the finite element results.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1730
Author(s):  
Ben Van Herbruggen ◽  
Jaron Fontaine ◽  
Anniek Eerdekens ◽  
Margot Deruyck ◽  
Wout Joseph ◽  
...  

To detect behavioral anomalies (disease/injuries), 24 h monitoring of horses each day is increasingly important. To this end, recent advances in machine learning have used accelerometer data to improve the efficiency of practice sessions and for early detection of health problems. However, current devices are limited in operational lifetime due to the need to manually replace batteries. To remedy this, we investigated the possibilities to power the wireless radio with a vibrational piezoelectric energy harvester at the leg (or in the hoof) of the horse, allowing perpetual monitoring devices. This paper reports the average power that can be delivered to the node by energy harvesting for four different natural gaits of the horse: stand, walking, trot and canter, based on an existing model for a velocity-damped resonant generator (VDRG). To this end, 33 accelerometer datasets were collected over 4.5 h from six horses during different activities. Based on these measurements, a vibrational energy harvester model was calculated that can provide up to 64.04 μW during the energetic canter gait, taking an energy conversion rate of 60% into account. Most energy is provided during canter in the forward direction of the horse. The downwards direction is less suitable for power harvesting. Additionally, different wireless technologies are considered to realize perpetual wireless data sensing. During horse training sessions, BLE allows continues data transmissions (one packet every 0.04 s during canter), whereas IEEE 802.15.4 and UWB technologies are better suited for continuous horse monitoring during less energetic states due to their lower sleep current.


Author(s):  
Zhengbao Yang ◽  
Jean Zu

Energy harvesting from vibrations has become, in recent years, a recurring target of a quantity of research to achieve self-powered operation of low-power electronic devices. However, most of energy harvesters developed to date, regardless of different transduction mechanisms and various structures, are designed to capture vibration energy from single predetermined direction. To overcome the problem of the unidirectional sensitivity, we proposed a novel multi-directional nonlinear energy harvester using piezoelectric materials. The harvester consists of a flexural center (one PZT plate sandwiched by two bow-shaped aluminum plates) and a pair of elastic rods. Base vibration is amplified and transferred to the flexural center by the elastic rods and then converted to electrical energy via the piezoelectric effect. A prototype was fabricated and experimentally compared with traditional cantilevered piezoelectric energy harvester. Following that, a nonlinear conditioning circuit (self-powered SSHI) was analyzed and adopted to improve the performance. Experimental results shows that the proposed energy harvester has the capability of generating power constantly when the excitation direction is changed in 360. It also exhibits a wide frequency bandwidth and a high power output which is further improved by the nonlinear circuit.


Author(s):  
Davide Castagnetti

Energy harvesting from ambient vibrations exploiting piezoelectric materials is an efficient solution for the development of self-sustainable electronic nodes. This work presents a simple and innovative piezoelectric energy harvester, intrinsically including dynamic magnification and inspired by fractal geometry. After an initial design step, computational analysis and experimental validation show a very good frequency response with five eigenfrequencies below 100 Hz. Even if the piezoelectric transducers were put only on a symmetric half of the top surface of the structure, the energy conversion is good for all the eigenfrequencies investigated.


This Paper presents a new technique of electrical energy generation using mechanically excited piezoelectric materials and a nonlinear process. This technique, called double synchronized switch harvesting (DSSH), is derived from the synchronized switch damping (SSD), which is a nonlinear technique previously developed to address the problem of vibration damping on mechanical structures. This technique results in a significant increase of the electromechanical conversion capability of piezoelectric materials. An optimized method of harvesting vibrational energy with a piezoelectric element using a dc–dc converter is presented. In this configuration, the converter regulates the power flow from the piezoelectric element to the desired electronic load. Analysis of the converter in discontinuous current conduction mode results in an expression for the duty cycle-power relationship. Using parameters of the mechanical system, the piezoelectric element, and the converter; the “optimal” duty cycle can be determined where the harvested power is maximized for the level of mechanical excitation. A circuit is proposed which implements this relationship, and experimental results show that the converter increases the harvested power by approximately 365% as compared to when the dc–dc converter is not used


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 962
Author(s):  
Antiopi-Malvina Stamatellou ◽  
Anestis I. Kalfas

A flutter-type, nonlinear piezoelectric energy harvester was tested in various combinations of aerodynamic and harmonic base excitation to study its power output and efficiency. The commercial polyvinylidene fluoride film transducer LDT1-028K was used in 33 excitation mode. The aerodynamic excitation was created by a centrifugal fan and the base excitation by a cone speaker. The excitations were produced by varying independently the mean airflow velocity and the frequency of base vibration. A capacitive load was used to store the harvested energy. A line laser was employed along with long exposure photography and high-speed video, for the visualization of the piezo film’s mode shapes and the measurement of maximum tip deflection. The harvested power was mapped along with the maximum tip deflection of the piezo-film, and a process of optimally combining the two excitation sources for maximum power harvesting is demonstrated. The energy conversion efficiency is defined by means of electrical power output divided by the elastic strain energy rate of change during oscillations. The efficiency was mapped and correlated with resonance conditions and results from other studies. It was observed that the conversion efficiency is related to the phase difference between excitation and response and tends to decrease as the excitation frequency rises.


2020 ◽  
Vol 10 (19) ◽  
pp. 6772 ◽  
Author(s):  
Yizhi Liu ◽  
Ziyu Huang ◽  
Yufei Gao

Topological optimization can realize the optimization of the mass distribution in the whole objective domain. Compared with morphology and size optimization, it has a higher degree of freedom. In this work, the three-dimensional topological optimization based on piezoelectric materials was discussed. Using the Optimality Criteria, topology optimization was applied to the cantilever piezoelectric transducer. The structure optimization was realized with the voltage and stiffness as the multi-objective function. The corresponding codes are given to show the process of optimization. With 70% of the origin volume, the bi-objective optimization increases the global stiffness by 50.9% and the voltage by 30%. As the iteration process shows, the results of bi-objective optimization prove the value of additive mass at the bottom of the cantilever. This lays the foundation for future piezoelectric transducer structural optimization. Using only stiffness as the objective, the final objective increases inconspicuously. Bi-objective optimization shows its superiority. There are quite a few papers that research the combination of stiffness and voltage, and research which studies three-dimensionality is a point of innovation. Furthermore, this is also the first time a piezoelectric topology code has been shared.


Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 555 ◽  
Author(s):  
Sang Hyun Ji ◽  
Yong-Soo Cho ◽  
Ji Sun Yun

In an effort to fabricate a wearable piezoelectric energy harvester based on core-shell piezoelectric yarns with external electrodes, flexible piezoelectric nanofibers of BNT-ST (0.78Bi0.5Na0.5TiO3-0.22SrTiO3) and polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) were initially electrospun. Subsequently, core-shell piezoelectric nanofiber yarns were prepared by twining the yarns around a conductive thread. To create the outer electrode layers, the core-shell piezoelectric nanofiber yarns were braided with conductive thread. Core-shell piezoelectric nanofiber yarns with external electrodes were then directly stitched onto the fabric. In bending tests, the output voltages were investigated according to the total length, effective area, and stitching interval of the piezoelectric yarns. Stitching patterns of the piezoelectric yarns on the fabric were optimized based on these results. The output voltages of the stitched piezoelectric yarns on the fabric were improved with an increase in the pressure, and the output voltage characteristics were investigated according to various body movements of bending and pressing conditions.


Sign in / Sign up

Export Citation Format

Share Document