A novel low k thin film based on plasma-polymerized 1- cyano isoquinoline

e-Polymers ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
Zhao Xiong-Yan ◽  
Wang Ming-Zhu ◽  
Wang Zhi

AbstractA novel low dielectric constant polymer, plasma-polymerized 1-cyano isoquinoline (PPCIQ) was prepared by plasma polymerization for the first time. The structure and surface compositions of the deposited PPCIQ thin films were investigated by Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). The results show that a high retention of the aromatic ring structure of the starting monomer in the deposited plasma films is obtained when a low discharge power of 15 W was used during film formation. In the case of higher discharge power of 35 W, more severe monomer molecular fragmentation can be observed. The dielectric properties measurements show that a low dielctric constant of 2.62 can be obtained for PPCIQ thin film deposited at 15 W.

2003 ◽  
Vol 766 ◽  
Author(s):  
Jin-Heong Yim ◽  
Jung-Bae Kim ◽  
Hyun-Dam Jeong ◽  
Yi-Yeoul Lyu ◽  
Sang Kook Mah ◽  
...  

AbstractPorous low dielectric films containing nano pores (∼20Å) with low dielectric constant (<2.2), have been prepared by using various kinds of cyclodextrin derivatives as porogenic materials. The pore structure such as pore size and interconnectivity can be controlled by changing functional groups of the cyclodextrin derivatives. We found that mechanical properties of porous low-k thin film prepared with mCSSQ (modified cyclic silsesquioxane) precursor and cyclodextrin derivatives were correlated with the pore interconnection length. The longer the interconnection length of nanopores in the thin film, the worse the mechanical properties of the thin film (such as hardness and modulus) even though the pore diameter of the films were microporous (∼2nm).


Langmuir ◽  
2004 ◽  
Vol 20 (16) ◽  
pp. 6658-6667 ◽  
Author(s):  
Ronald C. Hedden ◽  
Hae-Jeong Lee ◽  
Christopher L. Soles ◽  
Barry J. Bauer

Author(s):  
Michael C. Olewine ◽  
John F. DiGregorio ◽  
Gus J. Colovos ◽  
Kevin F. Saiz ◽  
Hongjiang Sun

Abstract Mechanical stress problems in integrated circuit devices are becoming more severe as the number of metal interconnect levels increases and new materials such as low-k dielectrics are introduced. We studied dielectric cracking in a four-level Al-Cu interconnect structure that uses hydrogen silsesquioxane (HSQ), a low dielectric constant (low-k) material. The cracks extended down through the passivation layers to the HSQ layer. For the first time we report on passivation dielectric cracks directly related to the level of residual fluorine in a plasma enhanced chemical vapor deposition (PECVD) reactor. It is shown that a silicon nitride pre-coat deposition removes fluorine (F) from the reactor ambient and prevents the dielectric cracks.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3029
Author(s):  
Wojciech Sas ◽  
Dawid Pinkowicz ◽  
Marcin Perzanowski ◽  
Magdalena Fitta

Over recent years, investigations of coordination polymer thin films have been initiated due to their unique properties, which are expected to be strongly enhanced in the thin film form. In this work, a crystalline [FeII(H2O)2]2[NbIV(CN)8]∙4H2O (1) film on a transparent Nafion membrane was obtained, for the first time, via ion-exchange synthesis. The proper film formation and its composition was confirmed with the use of energy dispersive X-ray spectroscopy and infrared spectroscopy, as well as in situ Ultraviolet-Visible (UV-Vis) spectroscopy. The obtained film were also characterized by scanning electron microscopy, X-ray diffraction, and magnetic measurements. The [FeII(H2O)2]2[NbIV(CN)8]∙4H2O film shows a sharp phase transition to a long-range magnetically ordered state at Tc = 40 K. The 1 film is a soft ferromagnet with the coercive field Hc = 1.2 kOe. Compared to the bulk counterpart, a decrease in critical temperature and a significant increase in the coercive field were observed in the films indicating a distinct size effect. The decrease in Tc could also have been related to the possible partial oxidation of FeII ions to FeIII, which could be efficient, due to the large surface of the thin film sample.


Author(s):  
Tianlei Ma ◽  
Marek Nikiel ◽  
Andrew G. Thomas ◽  
Mohamed Missous ◽  
David J. Lewis

AbstractIn this report, we prepared transparent and conducting undoped and molybdenum-doped tin oxide (Mo–SnO2) thin films by aerosol-assisted chemical vapour deposition (AACVD). The relationship between the precursor concentration in the feed and in the resulting films was studied by energy-dispersive X-ray spectroscopy, suggesting that the efficiency of doping is quantitative and that this method could potentially impart exquisite control over dopant levels. All SnO2 films were in tetragonal structure as confirmed by powder X-ray diffraction measurements. X-ray photoelectron spectroscopy characterisation indicated for the first time that Mo ions were in mixed valence states of Mo(VI) and Mo(V) on the surface. Incorporation of Mo6+ resulted in the lowest resistivity of $$7.3 \times 10^{{ - 3}} \Omega \,{\text{cm}}$$ 7.3 × 10 - 3 Ω cm , compared to pure SnO2 films with resistivities of $$4.3\left( 0 \right) \times 10^{{ - 2}} \Omega \,{\text{cm}}$$ 4.3 0 × 10 - 2 Ω cm . Meanwhile, a high transmittance of 83% in the visible light range was also acquired. This work presents a comprehensive investigation into impact of Mo doping on SnO2 films synthesised by AACVD for the first time and establishes the potential for scalable deposition of SnO2:Mo thin films in TCO manufacturing. Graphical abstract


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 478
Author(s):  
Wan Mohd Ebtisyam Mustaqim Mohd Daniyal ◽  
Yap Wing Fen ◽  
Silvan Saleviter ◽  
Narong Chanlek ◽  
Hideki Nakajima ◽  
...  

In this study, X-ray photoelectron spectroscopy (XPS) was used to study chitosan–graphene oxide (chitosan–GO) incorporated with 4-(2-pyridylazo)resorcinol (PAR) and cadmium sulfide quantum dot (CdS QD) composite thin films for the potential optical sensing of cobalt ions (Co2+). From the XPS results, it was confirmed that carbon, oxygen, and nitrogen elements existed on the PAR–chitosan–GO thin film, while for CdS QD–chitosan–GO, the existence of carbon, oxygen, cadmium, nitrogen, and sulfur were confirmed. Further deconvolution of each element using the Gaussian–Lorentzian curve fitting program revealed the sub-peak component of each element and hence the corresponding functional group was identified. Next, investigation using surface plasmon resonance (SPR) optical sensor proved that both chitosan–GO-based thin films were able to detect Co2+ as low as 0.01 ppm for both composite thin films, while the PAR had the higher binding affinity. The interaction of the Co2+ with the thin films was characterized again using XPS to confirm the functional group involved during the reaction. The XPS results proved that primary amino in the PAR–chitosan–GO thin film contributed more important role for the reaction with Co2+, as in agreement with the SPR results.


1999 ◽  
Vol 565 ◽  
Author(s):  
Y. Shimogaki ◽  
S. W. Lim ◽  
E. G. Loh ◽  
Y. Nakano ◽  
K. Tada ◽  
...  

AbstractLow dielectric constant F-doped silicon oxide films (SiO:F) can be prepared by adding fluorine source, like as CF4 to the conventional PECVD processes. We could obtain SiO:F films with dielectric constant as low as 2.6 from the reaction mixture of SiH4/N2 O/CF4. The structural changes of the oxides were sensitively detected by Raman spectroscopy. The three-fold ring and network structure of the silicon oxides were selectively decreased by adding fluorine into the film. These structural changes contribute to the decrease ionic polarization of the film, but it was not the major factor for the low dielectric constant. The addition of fluorine was very effective to eliminate the Si-OH in the film and the disappearance of the Si-OH was the key factor to obtain low dielectric constant. A kinetic analysis of the process was also performed to investigate the reaction mechanism. We focused on the effect of gas flow rate, i.e. the residence time of the precursors in the reactor, on growth rate and step coverage of SiO:F films. It revealed that there exists two species to form SiO:F films. One is the reactive species which contributes to increase the growth rate and the other one is the less reactive species which contributes to have uniform step coverage. The same approach was made on the PECVD process to produce low-k C:F films from C2F4, and we found ionic species is the main precursor to form C:F films.


Surfaces ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 106-114
Author(s):  
Yannick Hermans ◽  
Faraz Mehmood ◽  
Kerstin Lakus-Wollny ◽  
Jan P. Hofmann ◽  
Thomas Mayer ◽  
...  

Thin films of ZnWO4, a promising photocatalytic and scintillator material, were deposited for the first time using a reactive dual magnetron sputtering procedure. A ZnO target was operated using an RF signal, and a W target was operated using a DC signal. The power on the ZnO target was changed so that it would match the sputtering rate of the W target operated at 25 W. The effects of the process parameters were characterized using optical spectroscopy, X-ray diffraction, and scanning electron microscopy, including energy dispersive X-ray spectroscopy as well as X-ray photoelectron spectroscopy. It was found that stoichiometric microcrystalline ZnWO4 thin films could be obtained, by operating the ZnO target during the sputtering procedure at a power of 55 W and by post-annealing the resulting thin films for at least 10 h at 600 °C. As FTO coated glass substrates were used, annealing led as well to the incorporation of Na, resulting in n+ doped ZnWO4 thin films.


Sign in / Sign up

Export Citation Format

Share Document