A wideband metamaterial cross polarizer conversion for C and X band applications

Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Prakash Ranjan ◽  
Chetan Barde ◽  
Arvind Choubey ◽  
Rashmi Sinha ◽  
Anubhav Jain ◽  
...  

Abstract This article present wideband Metamaterial Cross Polarizer (MCP) structure for C and X band applications. The proposed structure consists of wheel shaped associated with meander line and triangular shaped patches having overall dimension of 18 × 18 mm. The anisotropic design patchis a single metallic layer (Cu) placed at the top of dielectric substrate FR-4 and backed by a ground also consists of metal layer (Cu). A wideband Polarization Conversion Ratio (PCR) above 0.8 magnitudes is achieved having bandwidth of 8.1 GHz ranging from 3.43 to 11.53 GHz and it works for C (4–8 GHz) and X (8–12 GHz) band approximately. The bandwidth of PCR at Full Width Half Maxima (FWHM) achieved is 8.24 GHz (3.60–11.84 GHz). Three distinct PCR peaks are observed at 4.2, 5.98, and 9.46 GHz with PCR magnitudes at 91.07, 96.39, and 99.76% respectively. Analysis of polarization conversion phenomena at these three frequencies is described with the help of current and electric field distribution. The proposed anisotropic structure is examined at different angles under normal and oblique incident. The simulation is performed through ANSYS HFSS (19.1), fabrication is done on substrate FR-4 using printed circuit board (PCB). The simulated and measured curves obtained for reflection coefficient and PCR are similar to one another with minute difference due to fabrication tolerances.

1996 ◽  
Vol 430 ◽  
Author(s):  
C. J. Reddy ◽  
M. D. Deshpande ◽  
G. A. Hanidu

AbstractA simple waveguide measurement technique is presented to determine the complex permittivity of printed circuit board material. The printed circuit board with metal coating removed from both sides and cut into size which is the same as the cross section of the waveguide is loaded in a short X-band rectangular waveguide. Using a network analyzer, the reflection coefficient of the shorted waveguide(loaded with the sample) is measured. Using the Finite Element Method(FEM) the exact reflection coefficient of the shorted wavguide(loaded with the sample) is determined as a function of dielectric constant. Matching the measured value of the reflection coefficient with the reflection value calculated using FEM and utilizing Newton-Raphson Method, an estimate of the dielectric constant of a printed circuit board material is obtained. A comparison of estimated values of permittivity constant obtained using the present approach with the available data.


2021 ◽  
Vol 21 (1) ◽  
pp. 64-70
Author(s):  
Jeong Hun Park ◽  
Moon-Que Lee

This paper presents a new dual-band diode mixer for the X- and K-bands. The proposed mixer consists of a pair of series-connected diodes and a frequency-dependent delay line that operates at 180° and 360° at the X-band of 10.525 GHz and at the K-band of 24.15 GHz, respectively. Without reconfigurable devices such as switches, the proposed mixer operates as a single-balanced diode mixer at the X-band and a subharmonically pumped antiparallel diode mixer at the K-band simultaneously. The designed circuit was implemented in a hybrid microwave integrated circuit using discretely packaged RF components on a microwave printed circuit board. The measurement results showed conversion losses of 6.5 dB and 16.6 dB at the X- and K-bands, respectively.


Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 708
Author(s):  
Yu-Jen Chi ◽  
Chien-Fang Su ◽  
Ching-Lieh Li

This paper proposes a coplanar waveguide (CPW)-fed semiloop antenna with switchable linear polarization and radiation pattern. This design uses a novel asymmetric coplanar strip line (ACPS) circular ring to produce even or odd modes of the CPW, which can generate vertical or horizontal polarization in the semiloop antenna. The modes of the ACPS circular ring can be switched by controlling the on/off state of the PIN diode, and only a two-bit control signal is required to select the operating mode. The proposed polarization switchable antenna uses only one metal layer of the printed circuit board. The center frequency of the dual-polarization antenna was determined to be 2.45 GHz, and the −10 dB impedance bandwidths were determined to be 12.86% and 4.92% for vertical and horizontal polarization, respectively. The antenna parameters, such as the return loss, gain, and radiation patterns, are also presented for validating the proposed design.


2012 ◽  
Vol 132 (6) ◽  
pp. 404-410 ◽  
Author(s):  
Kenichi Nakayama ◽  
Kenichi Kagoshima ◽  
Shigeki Takeda

2014 ◽  
Vol 5 (1) ◽  
pp. 737-741
Author(s):  
Alejandro Dueñas Jiménez ◽  
Francisco Jiménez Hernández

Because of the high volume of processing, transmission, and information storage, electronic systems presently requires faster clock speeds tosynchronizethe integrated circuits. Presently the “speeds” on the connections of a printed circuit board (PCB) are in the order of the GHz. At these frequencies the behavior of the interconnects are more like that of a transmission line, and hence distortion, delay, and phase shift- effects caused by phenomena like cross talk, ringing and over shot are present and may be undesirable for the performance of a circuit or system.Some of these phrases were extracted from the chapter eight of book “2-D Electromagnetic Simulation of Passive Microstrip Circuits” from the corresponding author of this paper.


Author(s):  
Prabjit Singh ◽  
Ying Yu ◽  
Robert E. Davis

Abstract A land-grid array connector, electrically connecting an array of plated contact pads on a ceramic substrate chip carrier to plated contact pads on a printed circuit board (PCB), failed in a year after assembly due to time-delayed fracture of multiple C-shaped spring connectors. The land-grid-array connectors analyzed had arrays of connectors consisting of gold on nickel plated Be-Cu C-shaped springs in compression that made electrical connections between the pads on the ceramic substrates and the PCBs. Metallography, fractography and surface analyses revealed the root cause of the C-spring connector fracture to be plating solutions trapped in deep grain boundary grooves etched into the C-spring connectors during the pre-plating cleaning operation. The stress necessary for the stress corrosion cracking mechanism was provided by the C-spring connectors, in the land-grid array, being compressed between the ceramic substrate and the printed circuit board.


Author(s):  
William Ng ◽  
Kevin Weaver ◽  
Zachary Gemmill ◽  
Herve Deslandes ◽  
Rudolf Schlangen

Abstract This paper demonstrates the use of a real time lock-in thermography (LIT) system to non-destructively characterize thermal events prior to the failing of an integrated circuit (IC) device. A case study using a packaged IC mounted on printed circuit board (PCB) is presented. The result validated the failing model by observing the thermal signature on the package. Subsequent analysis from the backside of the IC identified a hot spot in internal circuitry sensitive to varying value of external discrete component (inductor) on PCB.


Author(s):  
Jun-Xian Fu ◽  
Shukri Souri ◽  
James S. Harris

Abstract Temperature and humidity dependent reliability analysis was performed based on a case study involving an indicator printed-circuit board with surface-mounted multiple-die red, green and blue light-emitting diode chips. Reported intermittent failures were investigated and the root cause was attributed to a non-optimized reflow process that resulted in micro-cracks and delaminations within the molding resin of the chips.


Sign in / Sign up

Export Citation Format

Share Document