Mitochondrial contributions to neuronal development and function

2018 ◽  
Vol 399 (7) ◽  
pp. 723-739 ◽  
Author(s):  
Andrea Princz ◽  
Konstantinos Kounakis ◽  
Nektarios Tavernarakis

AbstractMitochondria are critical to tissues and organs characterized by high-energy demands, such as the nervous system. They provide essential energy and metabolites, and maintain Ca2+balance, which is imperative for proper neuronal function and development. Emerging findings further underline the role of mitochondria in neurons. Technical advances in the last decades made it possible to investigate key mechanisms in neuronal development and the contribution of mitochondria therein. In this article, we discuss the latest findings relevant to the involvement of mitochondria in neuronal development, placing emphasis on mitochondrial metabolism and dynamics. In addition, we survey the role of mitochondrial energy metabolism and Ca2+homeostasis in proper neuronal function, and the involvement of mitochondria in axon myelination.

2018 ◽  
Vol 25 (4) ◽  
pp. 334-343 ◽  
Author(s):  
Lauren Rosko ◽  
Victoria N. Smith ◽  
Reiji Yamazaki ◽  
Jeffrey K. Huang

The human brain weighs approximately 2% of the body; however, it consumes about 20% of a person’s total energy intake. Cellular bioenergetics in the central nervous system involves a delicate balance between biochemical processes engaged in energy conversion and those responsible for respiration. Neurons have high energy demands, which rely on metabolic coupling with glia, such as with oligodendrocytes and astrocytes. It has been well established that astrocytes recycle and transport glutamine to neurons to make the essential neurotransmitters, glutamate and GABA, as well as shuttle lactate to support energy synthesis in neurons. However, the metabolic role of oligodendrocytes in the central nervous system is less clear. In this review, we discuss the energetic demands of oligodendrocytes in their survival and maturation, the impact of altered oligodendrocyte energetics on disease pathology, and the role of energetic metabolites, taurine, creatine, N-acetylaspartate, and biotin, in regulating oligodendrocyte function.


2019 ◽  
Vol 20 (21) ◽  
pp. 5477 ◽  
Author(s):  
Eleonora D’Ambra ◽  
Davide Capauto ◽  
Mariangela Morlando

Circular RNAs (circRNAs) are a distinctive class of regulatory non-coding RNAs characterised by the presence of covalently closed ends. They are evolutionary conserved molecules, and although detected in different tissues, circRNAs resulted specifically enriched in the nervous system. Recent studies have shown that circRNAs are dynamically modulated during neuronal development and aging, that circRNAs are enriched at synaptic levels and resulted modulated after synaptic plasticity induction. This has suggested that circRNAs might play an important role in neuronal specification and activity. Despite the exact function of circRNAs is still poorly understood, emerging evidence indicates that circRNAs have important regulatory functions that might extensively contribute to the dynamic modulation of gene expression that supports neuronal pathways. More interestingly, deregulation of circRNAs expression has been linked with various pathological conditions. In this review, we describe current advances in the field of circRNA biogenesis and function in the nervous system both in physiological and in pathological conditions, and we specifically lay out their association with neurodegenerative diseases. Furthermore, we discuss the opportunity to exploit circRNAs for innovative therapeutic approaches and, due to their high stability, to use circRNAs as suitable biomarkers for diagnosis and disease progression.


2005 ◽  
Vol 25 (3-4) ◽  
pp. 271-286 ◽  
Author(s):  
Jiří Borecký ◽  
Aníbal E. Vercesi

Energy-dissipation in plant mitochondria can be mediated by inner membrane proteins via two processes: redox potential-dissipation or proton electrochemical potential-dissipation. Alternative oxidases (AOx) and the plant uncoupling mitochondrial proteins (PUMP) perform a type of intrinsic and extrinsic regulation of the coupling between respiration and phosphorylation, respectively. Expression analyses and functional studies on AOx and PUMP under normal and stress conditions suggest that the physiological role of both systems lies most likely in tuning up the mitochondrial energy metabolism in response of cells to stress situations. Indeed, the expression and function of these proteins in non-thermogenic tissues suggest that their primary functions are not related to heat production.


Life ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 51
Author(s):  
Ilias Kalafatakis ◽  
Maria Savvaki ◽  
Theodora Velona ◽  
Domna Karagogeos

Demyelinating pathologies comprise of a variety of conditions where either central or peripheral myelin is attacked, resulting in white matter lesions and neurodegeneration. Myelinated axons are organized into molecularly distinct domains, and this segregation is crucial for their proper function. These defined domains are differentially affected at the different stages of demyelination as well as at the lesion and perilesion sites. Among the main players in myelinated axon organization are proteins of the contactin (CNTN) group of the immunoglobulin superfamily (IgSF) of cell adhesion molecules, namely Contactin-1 and Contactin-2 (CNTN1, CNTN2). The two contactins perform their functions through intermolecular interactions, which are crucial for myelinated axon integrity and functionality. In this review, we focus on the implication of these two molecules as well as their interactors in demyelinating pathologies in humans. At first, we describe the organization and function of myelinated axons in the central (CNS) and the peripheral (PNS) nervous system, further analyzing the role of CNTN1 and CNTN2 as well as their interactors in myelination. In the last section, studies showing the correlation of the two contactins with demyelinating pathologies are reviewed, highlighting the importance of these recognition molecules in shaping the function of the nervous system in multiple ways.


2013 ◽  
Vol 41 (4) ◽  
pp. 815-820 ◽  
Author(s):  
Jakub S. Nowak ◽  
Gracjan Michlewski

The human nervous system expresses approximately 70% of all miRNAs (microRNAs). Changing levels of certain ubiquitous and brain-specific miRNAs shape the development and function of the nervous system. It is becoming clear that misexpression of some miRNAs can contribute towards neurodevelopmental disorders. In the present article, we review the current knowledge of the role of miRNAs in development and pathogenesis of the nervous system.


2019 ◽  
Vol 10 (1) ◽  
pp. 43-55
Author(s):  
Nathan C. Donelson ◽  
Richa Dixit ◽  
Israel Pichardo-Casas ◽  
Eva Y. Chiu ◽  
Robert T. Ohman ◽  
...  

Locomotion is an ancient and fundamental output of the nervous system required for animals to perform many other complex behaviors. Although the formation of motor circuits is known to be under developmental control of transcriptional mechanisms that define the fates and connectivity of the many neurons, glia and muscle constituents of these circuits, relatively little is known about the role of post-transcriptional regulation of locomotor behavior. MicroRNAs have emerged as a potentially rich source of modulators for neural development and function. In order to define the microRNAs required for normal locomotion in Drosophila melanogaster, we utilized a set of transgenic Gal4-dependent competitive inhibitors (microRNA sponges, or miR-SPs) to functionally assess ca. 140 high-confidence Drosophila microRNAs using automated quantitative movement tracking systems followed by multiparametric analysis. Using ubiquitous expression of miR-SP constructs, we identified a large number of microRNAs that modulate aspects of normal baseline adult locomotion. Addition of temperature-dependent Gal80 to identify microRNAs that act during adulthood revealed that the majority of these microRNAs play developmental roles. Comparison of ubiquitous and neural-specific miR-SP expression suggests that most of these microRNAs function within the nervous system. Parallel analyses of spontaneous locomotion in adults and in larvae also reveal that very few of the microRNAs required in the adult overlap with those that control the behavior of larval motor circuits. These screens suggest that a rich regulatory landscape underlies the formation and function of motor circuits and that many of these mechanisms are stage and/or parameter-specific.


Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2340
Author(s):  
Hannah E. Henson ◽  
Michael R. Taylor

The spliceosome consists of accessory proteins and small nuclear ribonucleoproteins (snRNPs) that remove introns from RNA. As splicing defects are associated with degenerative conditions, a better understanding of spliceosome formation and function is essential. We provide insight into the role of a spliceosome protein U4/U6.U5 tri-snRNP-associated protein 1, or Squamous cell carcinoma antigen recognized by T-cells (Sart1). Sart1 recruits the U4.U6/U5 tri-snRNP complex to nuclear RNA. The complex then associates with U1 and U2 snRNPs to form the spliceosome. A forward genetic screen identifying defects in choroid plexus development and whole-exome sequencing (WES) identified a point mutation in exon 12 of sart1 in Danio rerio (zebrafish). This mutation caused an up-regulation of sart1. Using RNA-Seq analysis, we identified additional upregulated genes, including those involved in apoptosis. We also observed increased activated caspase 3 in the brain and eye and down-regulation of vision-related genes. Although splicing occurs in numerous cells types, sart1 expression in zebrafish was restricted to the brain. By identifying sart1 expression in the brain and cell death within the central nervous system (CNS), we provide additional insights into the role of sart1 in specific tissues. We also characterized sart1’s involvement in cell death and vision-related pathways.


Parasitology ◽  
1981 ◽  
Vol 82 (4) ◽  
pp. 1-30 ◽  

The purpose of this workshop was to collect together colleagues investigating the intermediary metabolism of protozoa, with a view to discussing those pathways involved in energy metabolism and the production of ATP and other high-energy compounds, together with the factors affecting energy balance. The aspects of energy metabolism chosen for discussion comprised the metabolic pathways ranging from the strictly anaerobic to highly oxidative; subcellular compartmentation of these pathways within the protozoa; the functional role of these pathways including a consideration of aero-tolerance; and the use of inhibitors as biochemical probes and potential chemotherapeuticagents. Hopefully this approach has produced a broad 'over-view' of important areas of protozoan energy metabolism which will enable both the specialist and non-specialist to appreciate the similarities and differences between the metabolic behaviour of a range of protozoa.


2015 ◽  
Vol 112 (13) ◽  
pp. 4158-4163 ◽  
Author(s):  
Nelcy Thazar-Poulot ◽  
Martine Miquel ◽  
Isabelle Fobis-Loisy ◽  
Thierry Gaude

Lipid droplets/oil bodies (OBs) are lipid-storage organelles that play a crucial role as an energy resource in a variety of eukaryotic cells. Lipid stores are mobilized in the case of food deprivation or high energy demands—for example, during certain developmental processes in animals and plants. OB degradation is achieved by lipases that hydrolyze triacylglycerols (TAGs) into free fatty acids and glycerol. In the model plant Arabidopsis thaliana, Sugar-Dependent 1 (SDP1) was identified as the major TAG lipase involved in lipid reserve mobilization during seedling establishment. Although the enzymatic activity of SDP1 is associated with the membrane of OBs, its targeting to the OB surface remains uncharacterized. Here we demonstrate that the core retromer, a complex involved in protein trafficking, participates in OB biogenesis, lipid store degradation, and SDP1 localization to OBs. We also report an as-yet-undescribed mechanism for lipase transport in eukaryotic cells, with SDP1 being first localized to the peroxisome membrane at early stages of seedling growth and then possibly moving to the OB surface through peroxisome tubulations. Finally, we show that the timely transfer of SDP1 to the OB membrane requires a functional core retromer. In addition to revealing previously unidentified functions of the retromer complex in plant cells, our work provides unanticipated evidence for the role of peroxisome dynamics in interorganelle communication and protein transport.


Sign in / Sign up

Export Citation Format

Share Document