Identification of Stable Processing Parameters in Ti–6Al–4V Alloy from a Wide Temperature Range Across β Transus and a Large Strain Rate Range

Author(s):  
Guo-Zheng Quan ◽  
Hai-Rong Wen ◽  
Shi-Ao Pu ◽  
Zhen-Yu Zou ◽  
Dong-Sen Wu

AbstractThe hot workability of Ti–6Al–4V alloy was investigated according to the measured stress–strain data and their derived forms from a series of hot compressions at the temperatures of 1,023–1,323 K and strain rates of 0.01–10 s

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Ramzi Othman

In several industrial applications, metallic structures are facing impact loads. Therefore, there is an important need for developing constitutive equations which take into account the strain rate sensitivity of their mechanical properties. The Johnson-Cook equation was widely used to model the strain rate sensitivity of metals. However, it implies that the yield and flow stresses are linearly increasing in terms of the logarithm of strain rate. This is only true up to a threshold strain rate. In this work, a three-constant constitutive equation, assuming an apparent activation volume which decreases as the strain rate increases, is applied here for some metals. It is shown that this equation fits well the experimental yield and flow stresses for a very wide range of strain rates, including quasi-static, high, and very high strain rates (from 10−5to 5 × 104 s−1). This is the first time that a constitutive equation is showed to be able to fit the yield stress over a so large strain rate range while using only three material constants.


2008 ◽  
Vol 22 (09n11) ◽  
pp. 1255-1262 ◽  
Author(s):  
NOBUSATO KOJIMA ◽  
HIROYUKI HAYASHI ◽  
TERUMI YAMAMOTO ◽  
KOJI MIMURA ◽  
SHINJI TANIMURA

The tensile stress-strain curves of iron and a variety of steels, covering a wide range of strength level, over a wide strain rate range on the order of 10−3 ~ 103 s −1, were obtained systematically by using the Sensing Block Type High Speed Material Testing System (SBTS, Saginomiya). Through intensive analysis of these results, the strain rate sensitivity of the flow stress for the large strain region, including the viscous term at high strain rates, the true fracture strength and the true fracture strain were cleared for the material group of the ferrous metals. These systematical data may be useful to develop a practical constitutive model for computer codes, including a fracture criterion for simulations of the dynamic behavior in crash worthiness studies and of work-pieces subjected to dynamic plastic working for a wide strain rate range.


2005 ◽  
Vol 297-300 ◽  
pp. 905-911 ◽  
Author(s):  
Xu Chen ◽  
Li Zhang ◽  
Masao Sakane ◽  
Haruo Nose

A series of tensile tests at constant strain rate were conducted on tin-lead based solders with different Sn content under wide ranges of temperatures and strain rates. It was shown that the stress-strain relationships had strong temperature- and strain rate- dependence. The parameters of Anand model for four solders were determined. The four solders were 60Sn-40Pb, 40Sn-60Pb, 10Sn-90Pb and 5Sn-95Pb. Anand constitutive model was employed to simulate the stress-strain behaviors of the solders for the temperature range from 313K to 398K and the strain rate range from 0.001%sP -1 P to 2%sP -1 P. The results showed that Anand model can adequately predict the rate- and temperature- related constitutive behaviors at all test temperatures and strain rates.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2861
Author(s):  
Wenqing Li ◽  
Tieqiang Geng ◽  
Shaofan Ge ◽  
Zhengwang Zhu ◽  
Long Zhang ◽  
...  

The strain rate effect on the mechanical behavior of amorphous alloys has aroused general interest. Most studies in this area have focused on quasi-static and high strain-rate compressive deformations. However, experimental results have been few, or even non-existent, under a moderate strain-rate loading. This article extends the traditional split Hopkinson pressure bar (SHPB) technique to characterize compressive deformation of an amorphous alloy at medium strain rates. The compressive behavior of Zr65.25Cu21.75Al8Ni4Nb1 amorphous alloy shows a negative strain rate effect on the yield strength with a quasi-static, moderate to high strain-rate range, and the fracture angle increases from 44° at 10−5 s−1 to 60° at 4000 s−1 as strain rate increases. Herein, we introduce a modified cooperative shear model to describe the compressive behavior of the current amorphous alloy under a broad strain rate range. The model predicts that the normalized yield strength will linearly descend with logarithmic strain rate when the strain rate is less than a critical strain rate, however, which rapidly decreases linearly with the square of the strain rate at high strain rates. The predicted data of the model are highly consistent with the current experimental results. These findings provide support for future engineering applications of amorphous alloys.


2016 ◽  
Vol 35 (4) ◽  
pp. 399-405 ◽  
Author(s):  
Yongkang Liu ◽  
Zongmei Yin ◽  
Junting Luo ◽  
Zhang Chunxiang ◽  
Yanshu Zhang

AbstractIsothermal compression tests were conducted on A100 steel using a Gleeble 1500 thermal simulator at a temperature range of 900–1,200°C and strain rate range of 0.001–3 s−1. Results show that the A100 steel has higher strength than the Aermet 100 steel at high temperatures. Constant values, such as A, α, and n, and activate energy Q were obtained through the regression processing of the stress–strain data curves under different strains. A set of constitutive equations for A100 steel was proposed by using an Arrhenius-type equation. The optimum processing craft ranges for A100 steel based on the analysis of the hot working diagram and deformation mechanism are as follows: temperature range of 1,000–1,100°C and strain rate range of 0.01–0.1 s−1. The average grain size within this working range is 7–22.5 μm.


2011 ◽  
Vol 117-119 ◽  
pp. 434-437
Author(s):  
Wen Jun Hu ◽  
Xi Cheng Huang ◽  
Fang Ju Zhang ◽  
Cheng Jun Chen

Uni-axial quasi-static tests at strain rates 10-5, 10-4, 10-3,10-2 and 10-1 s-1 and dynamic compressive tests at strain rates 1679, 2769,5000 and 8200 s-1 have been carried out to study the mechanical behavior for polycarbonate used in the avigation industry. The stress–strain curves of polycarbonate in the strain-rate range from 10-5 to 8200 s-1 have been obtained. The effects of the strain rate on yield phenomenon and rate-dependent mechanical behavior are discussed. A plastic flow law based on the DSGZ rate-temperature-dependent constitutive model was used to describe the mechanical behavior of polycarbonate in the strain-rate range from 10-5 to 103 s-1. The results at the six strain rates are in excellent agreement with the experimental data, which illustrates that the constitutive model can describe the mechanical behavior for polycarbonate at low and high strain rates perfectly.


2003 ◽  
Vol 81 (1-2) ◽  
pp. 191-200 ◽  
Author(s):  
S J Jones ◽  
R E Gagnon ◽  
A Derradji ◽  
A Bugden

The uniaxial compressive strength of iceberg ice was determined over a wide range of strain rates from 10–8 to 10+1 s–1 at –10°C. It was found that for strain rates less than 10–4 s–1, strength increased in a power-law manner with strain rate. Above 10–4 s–1, the strength was essentially constant at 4 MPa, dropping slightly between 10–3 and 10–1 s–1, before rising again to a value of about 10 MPa at 10+1 s–1. Thin sections of the ice revealed a small grain size of about 3.5 mm and elongated air bubbles with a ratio of length to width of about 10. In the practical strain-rate range of interest, the maximum failure stress observed was 4.8 MPa. PACS No.: 62.20


2013 ◽  
Vol 592-593 ◽  
pp. 313-316
Author(s):  
Péter Jenei ◽  
Guy Dirras ◽  
Jenő Gubicza ◽  
Hervé Couque

The deformation mechanisms in ultrafine-grained hexagonal close packed Zn were investigated at different strain rates and temperatures. The influence of grain size on the deformation mechanisms was revealed by comparing the results obtained on ultrafine-grained and coarse-grained Zn. It was found that for coarse-grained Zn at room temperature and strain rates lower than 10-2s-1twinning contributed to plasticity besides dislocation activity. For strain rates higher than 103s-1the plasticity in coarse-grained Zn was controlled by dislocation drag. In ultrafine-grained Zn the relatively large dislocation density (~1014m-2) and the small grain size (~250 nm) limit the dislocation velocity yielding the lack of dislocation drag effects up to 104s-1. For ultrafine-grained Zn, twinning was not observed in the entire strain rate range due to its very small grain size. During room temperature compression at strain rates higher than 0.35 s-1and in high temperature creep deformation of ultrafine-grained Zn besides prismatic and pyramidal <c+a> dislocations observed in the initial state, <a>-type basal and pyramidal dislocations as well as other <c+a>-type pyramidal dislocations were formed.


2016 ◽  
Vol 723 ◽  
pp. 252-257
Author(s):  
Ruo Han Chang ◽  
Zhong Yi Cai ◽  
Chao Jie Che

The true stress-strain data from isothermal hot compression tests on Gleeble-1500D thermo mechanical simulator, in a wide range of temperatures (350-450°C) and strain rates (0.001-1s-1), was employed to establish the PSO-BP network prediction model and 3D processing map of Mg-Sm-Zn-Zr alloy. It was found that the PSO-BP model could be efficient and accurate in predicting flow stress, most of relative errors were in the range of -4% to 6%, and the average relative error was found to be 1.52%. Then considering the effect of strain, the 3D processing map was established to characterize the hot workability of the alloy. The 3D processing map exhibited the maximum efficiency domain and the instability domain, which could be used to determine the optimal deformation conditions. The optimum processing parameters of Mg-Sm-Zn-Zr alloy were deformation temperatures of 400-450°C and strain rates of 0.003-0.1s-1.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 875-880 ◽  
Author(s):  
HONGWU SONG ◽  
SHIHONG ZHANG ◽  
MING CHENG ◽  
FEI MEN ◽  
CHUNLING BAO

The effect of processing parameters on hot workability and microstructure evolution during subtransus deformation of TC11 alloy with widmanstăten microstructure was studied using isothermal compression tests. Testing was conducted at strain rates of 0.1-10s-1, temperature ranges 920-980°C and height reductions of 30-70%. The influence of hot working parameters on flow behavior, hot workability and microstructure evolution was systemically investigated. The results showed that all the flow curves exhibited a peak stress at very low strains (<0.1) followed by extensive flow softening. Surface fracture, cavitations and localized shear flow were found to be main factors that limited the hot workability of TC11 alloy. At low strains, lamellar kinking started to occur due to the orientation between the colony α lamellar and stress axis. With deformation continues, reorientation of the lamellar colony occurred and the deformed lamellar became elongated and thinner. At high stains, segmentation and globularization of α lamellar took place to produce a refined microstructure with α grain size around 1 µm that is technologically desirable for secondary processes such as superplastic forming. A microstructure mechanism map based on the previous results was then established and applied to process design considering defect and microstructure control.


Sign in / Sign up

Export Citation Format

Share Document