Influence of nanostructured Cu on the mechanical properties of Cu–MWCNTs composites

Author(s):  
Lailesh Kumar ◽  
Santosh Kumar Sahoo ◽  
Syed Nasimul Alam

Abstract In the present investigation, Cu-multiwalled carbon nanotubes (MWCNTs) nanocomposites were developed through mechanical milling using nanostructured Cu as a matrix and MWCNTs as nanofillers. The influence of nanostructured Cu on the microstructure, microhardness, and wear behavior of Cu-MWCNTs nanocomposites was also studied. The crystallite size of nanostructured Cu powder via mechanical milling for 25 h was found to be 16 nm. The major challenge associated with the development of Cu-MWCNTs nanocomposites is the uniform dispersion of the CNTs in the Cu matrix, which was addressed by incorporating nanostructured Cu, leading to the homogeneous distribution of CNTs and good bonding between the CNTs and the Cu matrix. A significant improvement in relative density and microhardness with <3 wt.% MWCNTs was observed compared to pure asreceived Cu and its composites. The hardness of Cu-3 wt.% MWCNTs nanocomposite developed using nanostructured Cu were achieved at <800 MPa, which is about 2.3 times higher than that of the as-received Cu sample (~ 359 MPa). The significant increment in mechanical and wear properties mainly originates from fine-grain strengthening effects and solid solution strengthening. The wear mechanisms in the various nanostructured Cu-MWCNTs composites were studied in detail and oxidation wear was identified as one of the main wear mechanisms.

2015 ◽  
Vol 713-715 ◽  
pp. 2617-2623
Author(s):  
Jun Ping Yuan ◽  
Chun Yu Ma ◽  
Chang Wang

The hardness of pure gold jewellery is low which makes it difficult to meet structural design and performance requirements, and restricts its artistic value. In this research, scandium, calcium, and magnesium were used as alloying elements with pure gold, and the microstructure and hardening behaviour of modified pure gold were studied through cold-working, solid solution, and aging treatment. The results showed that the as-cast hardness of an Sc-Ca-Mg alloyed pure gold could reach HV64: after solution treatment at 700 °C, the hardness could reach HV55, and the microstructure in its solid solution state presented a homogeneous single phase. When the modified pure gold was deformed and the deformation rate reached 80%, the hardness reached HV118, after aging treatment at 250 °C and small precipitation phases were dispersed in its structure; the resultant grain size was finer than that of pure gold, and the hardness reached HV133. The hardening behaviour of this modified pure gold was the comprehensive effect of solid solution strengthening, fine-grain strengthening, deformation strengthening, and precipitation strengthening.


2012 ◽  
Vol 729 ◽  
pp. 332-337
Author(s):  
G. Dogossy ◽  
E. Sági ◽  
Ferenc Ronkay

Three ultrahigh molecular weight polyethylene (UHMWPE) composites of differing composition, reinforced with multiwalled carbon nanotubes (MWCNT) were prepared. The homogeneous distribution of MWCNT has been attempted by two dry blending methods and one melt-mixing process. The efficiency of the various methods was characterized by their effects on the quasi-static and dynamic physical properties of the composites. In the case of composites manufactured by ball milling the effects of various adhesion promoter additives (compatibilizers) has also been studied by analyzing the tensile, flexural, Charpy impact and wear properties of the composites.


Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 547 ◽  
Author(s):  
Jialin Cheng ◽  
Yeling Yun ◽  
Jingjing Wang ◽  
Jiaxin Rui ◽  
Shun Wang ◽  
...  

Through the first-principle calculations based on density functional theory and experimental investigation, the structural stability elastic properties and mechanical properties of Ti2Cu and Ti18Cu5Nb1 intermetallics were studied. The first-principle calculations showed that the ratio of bulk modulus to shear modulus (B/G) and Poisson’s ratio (ν) of Ti2Cu and Ti18Cu5Nb1 intermetallics were 2.03, 0.288, and 2.22, 0.304, respectively, indicating that the two intermetallics were ductile. This was confirmed by the compression tests, which showed that the plastic strain of both intermetallics was beyond 25%. In addition, the yield strength increased from the 416 to 710 MPa with the addition of Nb. The increase in strength is the result of three factors, namely covalent bond tendency, fine grain strengthening, and solid solution strengthening. This finding gives clues to design novel intermetallics with excellent mechanical properties by first-principle calculations and alloying.


2014 ◽  
Vol 616 ◽  
pp. 270-274
Author(s):  
Yoon Seok Lee ◽  
Mitsuo Niinomi ◽  
Masaaki Nakai ◽  
Kengo Narita ◽  
Junko Hieda ◽  
...  

The wear mechanisms of conventional Ti–6Al–4V extra-low interstitial (Ti64) and the new Ti–29Nb–13Ta–4.6Zr (TNTZ) were studied to investigate the wear properties of Ti64/TNTZ for application in spinal fixation devices. Ti64 and TNTZ balls and discs were first prepared as wear-test specimens. A ball-on-disc frictional wear-testing machine was used in air to perform the frictional wear tests of the Ti64 and TNTZ discs mated against Ti64 and TNTZ balls. The wear mechanisms were investigated using a scanning electron microscopy to analyze the worn surfaces and wear debris. The volume losses for the TNTZ discs were larger than those for the Ti64 ones, regardless of the mating ball material. Furthermore, the morphologies of the wear tracks and the debris of the Ti64 and TNTZ discs were different, suggesting that the wear mechanisms for the Ti64 and TNTZ discs were abrasive and delamination wear caused by mild and severe subsurface deformations of the Ti64 and TNTZ, respectively, regardless of the mating ball material.


2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
N. Selvakumar ◽  
K. Gangatharan

This work focuses on the influence and contribution of multiwalled carbon-nanotube (MWCNT)–boron carbide (B4C) to the mechanical and tribological properties of copper matrix composites. Different weight fractions of nano- B4C-containing fixed-weight fractions of MWCNT-reinforced copper composites were prepared using the entrenched cold-press sintering method of powder metallurgy. The wear losses of sintered Cu–MWCNT–B4C composites were investigated by conducting sliding tests in a pin-on-disc apparatus. The addition of reinforcements showed enhancements in the hardness and wear properties of the composites due to the uniform dispersion of the secondary reinforcement in the copper matrix and the self-lubricating effect of the MWCNTs. The effects of the nanoparticle distribution in the matrix, the worn surface morphology, and the elemental composition of the composites were characterized using high-resolution scanning electron microscopy and X-ray diffraction analysis. The electrical resistivity of the fabricated copper hybrid composite preforms was evaluated using a four-point probe tester. Our results highlight the use of experiential reinforcing limits of B4C on the wear and electrical and mechanical behaviour of copper composites.


Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 635 ◽  
Author(s):  
Min Zhang ◽  
Changjun Chen ◽  
Chang Liu ◽  
Shunquan Wang

This study reports the effect of Zn contents on surface morphology, porosity, microstructure and mechanical properties of laser additive manufacturing (LAM) porous ZK61 alloys. The surface morphology and porosity of the LAMed porous ZK61 alloys depend on the laser energy input. With increasing Zn contents, the surface quality of porous Mg-Zn-Zr alloys became worse, the grains are obviously refined and the precipitated phases experienced successive transitions: MgZn → MgZn + Mg7Zn3 → Mg7Zn3. The microhardness was improved significantly and ranged from 57.67 HV to 109.36 HV, which was ascribed to the fine grain strengthening, solid solution strengthening and precipitation strengthening. The LAMed porous Mg-15 wt.% Zn-0.3 wt.% Zr alloy exhibits the highest ultimate compressive strength (73.07 MPa) and elastic modulus (1.785 GPa).


2021 ◽  
Author(s):  
Daoxi Li ◽  
Zhi Wang ◽  
Chao Zhao ◽  
Zongqiang Luo ◽  
wengwen Zhang

Abstract We studied the microstructure of the transfer layer and its effect on the wear mechanism and wear property of an aged Cu-15Ni-8Sn alloy against GCr15 bearing steel during dry sliding by changing the applied load. The results indicate that the aged Cu-15Ni-8Sn alloy shows different wear behavior and wear properties when the applied load changed, where the average friction coefficient and specific wear rate decrease quickly with increasing applied load in steady wear condition. The sample tested under relatively high applied load shows the best wear performance owing the thickest oxide layer exists in the transfer layer. The main wear mechanisms were found changing with varied applied. The metallic nanocrystalline particles and the relative ductile copper oxides promotes the formation of a thick and densified oxide layer. The change of the thickness and morphology of the oxide layer under different load can significantly affect the wear mechanisms.


2013 ◽  
Vol 747-748 ◽  
pp. 426-430
Author(s):  
Xue Jun Li ◽  
Hui Li ◽  
Shuang Shuang Zhao ◽  
Ning Ma ◽  
Qiu Ming Peng

The Mg-1.0Zn-xCa (x=0.2, 0.5, 0.8, 1 wt. %) alloys were prepared by zone solidification and backward extrusion technology. The microstructure and mechanical properties of backward-extruded Mg-1.0Zn-xCa alloys were investigated. The results showed that these backward-extruded Mg-1.0Zn-xCa alloys were mainly composed of equi-axed pentagon-shaped grains and some Mg0.9Zn0.03 precipitates. The tensile and compressive strengths of backward-extruded Mg-1.0Zn-xCa alloys were greatly improved. The improved mechanical properties are mostly attributed to fine grain strengthening, solid solution strengthening and precipitate strengthening. The results demonstrated that the micro alloying of Ca element was one of effective method to improve the mechanical properties of Mg-1.0Zn based biomaterials.


2012 ◽  
Vol 472-475 ◽  
pp. 297-301
Author(s):  
Jin Bin Lu ◽  
Pu Meng ◽  
Feng Tang ◽  
Jin Xia Gong ◽  
Bin Zhao

TiC reinforced Fe-based composite coating with 10% and 20% TiC particle were prepared on the surface of substrate Q235 steel by plasma cladding, respectively. The microstructure and formation mechanism of cladding layer were carefully investigated by SEM, EDS and XRD. The results show that metallurgical combination is achieved between coating and substrate, the microstructure of composite coating is composed of dendrite α-Fe, interdendritic eutectic structure (α-Fe, Cr23C6 and CrB) and added TiC particles, and microstructure refinement with the increase of TiC particles content. TiC particles react with Fe-based alloy and part of TiC particles dissolve into coating. The hardness of composite coating has a relationship with TiC particles content and TiC particles distribution, and hardness increase with the increase of TiC particles content. The maximum value of composite coating hardness is 545 HV0.2 and 719 HV0.2, respectively. The major strengthening mechanism is fine-grain strengthening, solid solution strengthening and dispersion strengthening.


2020 ◽  
Vol 22 (4) ◽  
pp. 1031-1046
Author(s):  
X. Canute ◽  
M. C. Majumder

AbstractThe need for development of high temperature wear resistant composite materials with superior mechanical properties and tribological properties is increasing significantly. The high temperature wear properties of aluminium boron carbide composites was evaluated in this investigation. The effect of load, sliding velocity, temperature and reinforcement percentage on wear rate was determined by the pin heating method using pin heating arrangement. The size and structure of base alloy particles change considerably with an increase of boron carbide particles. The wettability and interface bonding between the matrix and reinforcement enhanced by the addition of potassium flurotitanate. ANOVA technique was used to study the effect of input parameters on wear rate. The investigation reveals that the load had higher significance than sliding velocity, temperature and weight fraction. The pin surface was studied with a high-resolution scanning electron microscope. Regression analysis revealed an extensive association between control parameters and response. The developed composites can be used in the production of automobile parts requiring high wear, frictional and thermal resistance.


Sign in / Sign up

Export Citation Format

Share Document