Antibacterial activity of cuminaldehyde on food-borne pathogens, the bioactive component of essential oil from Cuminum cyminum L. collected in Thailand

Author(s):  
Nalin Wongkattiya ◽  
Phanchana Sanguansermsri ◽  
Ian Hamilton Fraser ◽  
Donruedee Sanguansermsri

Abstract Background Cuminum cyminum L., commonly known as cumin, has been traditionally used in Thai traditional medicine and traditional food flavoring. The present study investigated the chemical composition, antimicrobial activity against all tested major food-borne pathogenic bacteria, and bioactive components of essential oil extracted from C. cyminum L. collected in Thailand. Methods The main components of the essential oil were investigated by gas chromatography–mass spectrometry (GC-MS) technique. Antibacterial activities against Bacillus cereus, Staphylococcus aureus, Escherichia coli, and Salmonella Typhi were investigated by disk diffusion and microdilution method. The presence of the biologically active antibacterial components was also confirmed by the thin-layer chromatography (TLC)-bioautography. Results The main components of the essential oil investigated by GC-MS were cuminaldehyde (27.10%), beta-pinene (25.04%) and gamma-terpinene (15.68%). The essential oil exhibited antibacterial activity against B. cereus, S. aureus, E. coli and S. Typhi. The essential oil showed the strongest antimicrobial activity against B. cereus with a comparable inhibition zone to tetracycline. TLC confirmed the presence of biologically active antibacterial component in the essential oil against all tested food-borne bacteria. It is further demonstrated that cuminaldehyde was the most active compound in TLC-bioautography which inhibited all of tested bacteria. Conclusions Essential oil extracted from C. cyminum L. exhibited antibacterial activity against all tested major food-borne pathogenic bacteria. Cuminaldehyde is a major bioactive component. Our results suggest that the essential oil extracted from C. cyminum L. could be applied as an alternative natural preservative to control food-borne disease and have the potential for further development of new antibacterial agents.

2010 ◽  
Vol 7 (3) ◽  
pp. 1159-1165
Author(s):  
Baghdad Science Journal

The antimicrobial activity of ginger extracts ( cold-water, hot-water, ethanolic and essential oil ) against some of pathogenic bacteria ( Escherichia coli , Salmonella sp , Klebsiella sp , Serratia marcescens, Vibrio cholerae , Staphylococcus aureus , Streptococcus sp) was investigated using Disc diffusion method , and the results were compared with the antimicrobial activity of 12 antibiotics on the same bacteria . The results showed that the ginger extracts were more effective on gram-positive bacteria than gram-negative . V. cholerae and S. marcescens,were the most resistant bacteria to the extracts used , while highest inhibition was noticed against Streptococcus sp (28 mm) . The ethanolic extract showed the broadest antibacterial activity ( 11 to 28 mm ) , in comparison with moderate activity of essential oil , it was observed that the cold-water extract was more effective on the bacteria than hot-water extract . Ginger ethanolic extract presented higher diameter of inhibition zone for Streptococcus sp than in Ciprofloxacin , Cefotaxime , Cefalotin , Cephalexin and Cephaloridine , also it was found a similarity between the higher inhibition zones of ethanolic extract of ginger and some antibiotics for S. aureus , E. coli , Salmonella sp and Klebsiella sp . V. cholerae and S. marcescens,also highly resistant to antibiotics . Phytochemical analysis of ethanolic extract of ginger revealed the present of glycosides, terpenoids, flavonids and phenolic compounds


Author(s):  
PURIT PATTANAPANIT ◽  
SUNISA MITHONGLANG ◽  
SUNITA MITHONGLANG ◽  
SURACHAI TECHAOEI

Objective: The objective of this study was to evaluate the antimicrobial activity of volatile oils from aromatic plants against pathogenic bacteria.Methods: Thai aromatic plants such as Pogostemon cablin (Blanco) Benth (Patchouli oil), Cymbopogon nardus Rendle (Citronella grass oil), Pelargoniumroseum (Geranium oil), Syzygium aromaticum (L.) Merrill and Perry (clove oil), Cinnamomum spp.(cinnamon oil), and Cymbopogon citratus (DC.) Stapf.(lemongrass oil) were selected. Essential oils were obtained by water distillation and were stored at 4°C until use. Five human pathogenic bacteria wereobtained from Thai traditional Medicine College, Rajamangala University of Technology, Staphylococcus epidermidis, Escherichia coli, Staphylococcusaureus, methicillin-resistant S. aureus (MRSA), and Pseudomonas aeruginosa. The antibacterial activity of volatile oils was determined by disc-diffusionassay. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of each essential oil were determined.Results: Our study showed that 10% of essential oil from Cinnamomum spp. was the most potential against S. aureus, MRSA, and E. coli when assayedby disc-diffusion method with inhibition zones ranging from 37.66±0.57 to 45.33±1.15 mm and from 29.33±0.57 to 36.00±1.00 for lemongrass oilwith MIC and MBC of 1.25%.Conclusion: From this study, it can be concluded that some essential oils have potential antibacterial activity. The present investigation providessupport to the antibacterial properties of essential oils and will be applied to health-care product as aroma antibacterial products.


1970 ◽  
Vol 25 (2) ◽  
pp. 85-89 ◽  
Author(s):  
Jaripa Begum ◽  
M Nazrul Islam Bhuiyan ◽  
Jasmin Uddin Chowdhury ◽  
M Nuzmul Hoque ◽  
M Nural Anwar

The essential oil of Carum carvi L. seeds was screened for its antimicrobial activity against ten pathogenic bacteria and six phytopathogenic fungi. The essential oil showed promising inhibitory activity against all the test bacteria, even at 2 ìl/disc. The minimum inhibitory concentration (MIC, 100-300 ppm) and minimum bactericidal concentration (MBC, 200-400 ppm) values of essential oil were determined. The antifungal screening of the essential oil showed 100% inhibition of radial mycelial growth of all the test fungi at 100 ppm. The MIC and minimum fungicidal concentration (MFC) values were found to vary from 50-300 ppm and 200-400 ppm respectively. The essential oil extracted by hydrodistillation from seeds of C. carvi was analyzed by gas chromatography-mass spectrometry (GC-MS). About 10 compounds had been identified in the seeds oils, accounting for more than 99.7% of the oils. The main components of the seeds oil were thymol (48.20%), o-cymene (19.29%), ϒ-terpinen (17.61%) and trimethylene dichloride (8.81%). Keywords: Antimicrobial activities; Carum carvi; Essential oil; GC-MS; ThymolDOI: http://dx.doi.org/10.3329/bjm.v25i2.4867 Bangladesh J Microbiol, Volume 25, Number 2, December 2008, pp 85-89


Author(s):  
L.A. Kotyuk

<p> </p><p>The paper relates to study of biological activity of 40% ethanol extracts of <em>Dracocephalum moldavica,</em> <em>Hyssopus officinalis</em>, <em>Satureja hortensis</em>, <em>Lophanthus anisatus</em> and <em>Monarda diduma</em>, grown in Ukrainian Polissya, against a pathogenic agent <em>Escherichia coli</em> UCM – B (ATCC 25922).</p><p>The research proves that ethanol extracts of <em>H. officinalis</em>, <em>D. moldavica, S. hortensis, L. anisatus</em> exert antimicrobial activity as the extracted substances provided a twofold increase in minimum bactericidal concentration (MBC) values against <em>E. coli. </em>Likewise, a twofold increase was observed in minimum inhibitory concentration (MIC) of <em>L. anisatus</em> ethanol extracts. As to <em>M. diduma </em>ethanol extracts, their inhibitory and bactericidal influence on <em>E. coli</em> was not registered.</p><p>Oil-bearing plants (family <em>Lamiaceae), </em>grown in Zhytomyr Polissya, are characterized by antimicrobial properties, attributed to biologically active substances that are formed and accumulated in the plant material. The main components of hyssop essential oil are isopinocamphone (44.43%), pinocamphone (35.49%), myrtenol (5.26 %), germacrene D (3.15 %), pulegone (2.93 %), bicyclogermacrene (1.35 %). In mint anise essential oil prevailed pulegone (59.19%), izomenton (14.34%), bicyclogermacrene (3,21 %), <em>β</em>-kariofilen (2,99 %), menton (2.21 %), 1,6-germacradien-5-ol (1.5 %), isopulegone (1.4 %), in summer savory – carvacrol (89.07%), g-terpinene (3.53%), <em>α</em>-thujone (1.7 %), camphor (1.48 %). The dominant components of moldavian dragonhead essential oil were geranial (26.19%) and neral (22.36%), 2-(1-hydroxy-1-isopropyl)-cyklopentanon (8.29 % ), 2,3-dehydro-1,8-cineole (6.87 %), 3-(1-hydroxy-1-isopropyl) cyklopentanon (6,51 %), nerol (4.74 %), 3-methyl-2-cyclohexane 1-on (2.13 %).<em></em></p><p>The paper draws attention to further more detailed study of ethanol extracts of hyssop, moldavian dragonhead, summer savory, mint anise with the aim of producing antibacterial herbal preparations.</p>


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Yasser Shahbazi

The aim of the present study was to investigate chemical composition and antibacterial activity of essential oil from the leaf ofMentha spicataplant against common food-borne pathogenic bacteria (Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, Listeria monocytogenes, Salmonella typhimurium, andEscherichia coliO157:H7). Chemical composition of the essential oil was identified by gas chromatography coupled with mass spectrometer detector (GC-MS). The antibacterial activity of the essential oil was evaluated by broth microdilution method and agar disk diffusion assay. According to the result of GC-MS analysis, 18 components were identified, accounting for 99.89% of the whole essential oil. The main components were carvone (78.76%), limonene (11.50%),β-bourbonene (11.23%),cis-dihydrocarveol (1.43%),trans-caryophyllene (1.04%), menthone (1.01%), menthol (1%), and terpinen-4-ol (0.99). The essential oil exhibited moderate level of antibacterial activity against all test microorganisms. In general, Gram-positive bacteria were more susceptible toM. spicataessential oil than Gram-negative bacteria.L. monocytogeneswas the most sensitive of the microorganisms to the antibacterial activity ofM. spicataessential oil (inhibition zone = 22 mm and MIC and MBC = 2.5 µL/mL). Based on our results, the essential oil ofM. spicataplant collected from Kermanshah province, west of Iran, has a potential to be applied as antibacterial agent.


2015 ◽  
Vol 7 (2) ◽  
pp. 666-671 ◽  
Author(s):  
Nitish Bansal ◽  
R. K. Gupta ◽  
Dharambir Singh ◽  
Shashank Shashank

Disease outbreaks are being increasingly recognized as a significant constraint on aquaculture production and trade affecting the economic development of the sector in many countries. Extracting and using biologically active compounds from earthworms has traditionally been practiced by indigenous people throughout the world. The aim of the present study was to shown antimicrobial activity through earthworm extract against fish bacterial pathogens. In total, 8 bacterial strains i.e. 6 gram negative viz. Aeromonas hydrophila, Pseudomonas aeruginosa, P. fluorescens, E.coli, Enterobacter aerogens and Shigella sp. and 2 gram positive viz. Staphylococcus aureus and Micrococcus luteus were identified. The extract of earthworm Perionyx excavatus, Pheretima posthuma were prepared and antimicrobial activity of the extract was determined by antimicrobial well diffusion assay. After 24 hrs of incubation period, it was observed that earthworm extract showed antibacterial activity against isolated bacterial strains. Among earthworm extract of two different species, the maximum zone of inhibition was shown against A. hydrophila by Perionyx excavatus (18.33± 0.66 mm) and P. posthuma (16.66±0.33). P. excavatus showed antibacterial activity against all pathogenic bacteria except Shigella spp. However on the other hand, P.posthuma showed antibacterial activity against A. hydrophila, P. fluorescens, E.coli, and S. aureus. The study has proved that earthworm extract can be effectively used for suppression of bacterial infection in fishes and that it can used as potential antimicrobial drug against commercial antibiotic resistance bacteria.


2021 ◽  
Vol 16 (5) ◽  
pp. 1934578X2110202
Author(s):  
Kuang-Ping Hsu ◽  
San-Hsien Tu ◽  
Yu-Chang Su ◽  
Chen-Lung Ho

This study investigated the chemical composition, and antimicrobial activity against food-borne pathogens of the essential oil isolated from the heartwood of Calocedrus formosana from Taiwan. The oil, isolated by hydrodistillation in a Clevenger-type apparatus, was characterized using GC–FID and GC–MS. The major constituents were τ-muurolol (16.1%), α-cadinol (11.1%), α-terpineol (10.6%), thymol (8.5%), and β-thujaplicin (4.5%). The oil demonstrated strong activity against food-borne bacterial and fungal pathogens, and, to determine the source compounds responsible for this activity , the main components were individually evaluated. The most active source compounds were determined to be τ-muurolol, α-cadinol, thymol, and β-thujaplicin.


2020 ◽  
Vol 18 ◽  
Author(s):  
Mulugeta Mulat ◽  
Fazlurrahman Khan ◽  
Archana Pandita

Background: Medicinal plants have been used for treatments of various health ailments and the practices as a remedial back to thousands of years. Currently, plant-derived compounds used as alternative ways of treatment for multidrug-resistant pathogens. Objective: In the present study, various parts of six medical plants such as Solanum nigrum, Azadirachta indica, Vitex negundo, Mentha arvensis, Gloriosa superba, and Ocimum sanctum were extracted for obtaining biological active constituents. Methods: Soxhlet method of extraction was used for obtaining crude extracts. Agar disc diffusion and 96-well plate spectroscopic reading were used to detect the extract’s antibacterial and antibiofilm properties. Results: The obtained extracts were tested for antimicrobial and antibiofilm properties at 25 mg/mL concentrations. Maximum antibacterial activity was observed in O. sanctum chloroform extract (TUCE) against Staphylococcus aureus (24.33±1.52 mm), S. nigrum acetone extract (MAAC) against Salmonella Typhimurium (12.6 ± 1.5 mm) and Pseudomonas aeruginosa (15.0 ±2.0 mm). Only TUCE exhibited antibacterial activity at least a minimum inhibitory concentration of 0.781 mg/mL. Better antibiofilm activities were also exhibited by petroleum extracts of G. superba (KAPE) and S. nigrum (MAPE) against Escherichia coli, S. Typhimurium, P. aeruginosa and S. aureus. Moreover, S. nigrum acetone extract (MAAC) and O. sanctum chloroform extract (TUCE) were showed anti-swarming activity with a reduction of motility 56.3% against P. aeruginosa and 37.2% against S. aureus. MAAC also inhibits Las A activity (63.3% reduction) in P. aeruginosa. Conclusion: Extracts of TUCE, MAAC, MAPE, and KAPE were exhibited antibacterial and antibiofilm properties against the Gram-positive and Gram-negative pathogenic bacteria. GCMS identified chemical constituents are responsible for being biologically active.


2016 ◽  
Vol 11 (7) ◽  
pp. 1934578X1601100
Author(s):  
Simona Casiglia ◽  
Maurizio Bruno ◽  
Sergio Rosselli ◽  
Felice Senatore

The chemical composition of the essential oil from flowers of Eringium triquetrum Vahl. collected in Sicily was evaluated by GC and GC-MS. The main components were pulegone (50.6%), piperitenone (30.5%) and menthone (7.0%). Comparison of this oil with other studied oils of Eringium species is discussed. The oil showed good antibacterial and antifungal activities against some microorganisms that infest historical art works.


1970 ◽  
Vol 18 ◽  
pp. 16-20
Author(s):  
BA Omogbai ◽  
FA Eze

Context: Plant based antimicrobial represent a vast untapped source for medicines and further exploration of plant antimicrobial neeto occur. Evolvulus alsinoides (L) (Convolvulaceae) is a perennial herb is used in traditional medicine in East Asia, India, Africa and Philippines to cure fever, cough, cold, venereal diseases, azoospermia, adenitis and dementia.   Objective: The objective of this research was to evaluate the antimicrobial activity of the extracts of E. alsinoides on some clinical microbial isolates.   Materials and Methods: The ed thanolic and aqueous extracts of the whole plant (leaves and twigs) were analysed for alkanoids, tannins, glycosides, steroids, flavonoids, saponins, volatile oil and resins. The determination of antibacterial activity was done using the agar well diffusion technique. Pure cultures of pathogenic bacteria such as Bacillus cereus, Staphylococcus aureus, Micrococcus leutus, Klebsiella Pneumoniae, Pseudomonas aeruginosa, Escherichia coli and Salmonella typhi were used for antibacterial activity assay, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC).   Results: The ethanolic extract of the plant had MIC values ranging from 16 mg/ml to 512.5 mg/ml. The least MIC was 16mg-ml against Salmonella typhi while Bacillus cereus and Staphylococcus aureus showed the highest MIC of 512.5 mg-ml. In the aqueous extract the MIC ranged between 512.5 to >1025 mg/ml. Salmonella typhi, Micrococcus luteus and Staphylococcus aureus were not inhibited by the water extract. Phytochemical result showed ethanol to be a better solvent for the extraction of the bioactive agents in this plant which include: glycosides, alkaloids, saponins, tannins, flavonoids and volatile oil.   Conclusion: In this study the gram-negative organisms had the lowest MICs and MBCs. This suggests their higher susceptibility to the extract of this plant. On the basis of the result obtained in this investigation it can be concluded that ethanol extract of Evolvulus alsinoides had significant in vitro broad spectrum antimicrobial activity.   Keywords: Evolvulus alsinoides; Phytochemical screening; Antibacterial activity. DOI: http://dx.doi.org/10.3329/jbs.v18i0.8769 JBS 2010; 18(0): 16-20


Sign in / Sign up

Export Citation Format

Share Document