scholarly journals Ultra-thin films for plasmonics: a technology overview

2015 ◽  
Vol 4 (3) ◽  
Author(s):  
Radu Malureanu ◽  
Andrei Lavrinenko

AbstractUltra-thin films with low surface roughness that support surface plasmon-polaritons in the infra-red and visible ranges are needed in order to improve the performance of devices based on the manipulation of plasmon propagation. Increasing amount of efforts is made in order not only to improve the quality of the deposited layers but also to diminish their thickness and to find new materials that could be used in this field. In this review, we consider various thin films used in the field of plasmonics and metamaterials in the visible and IR range. We focus our presentation on technological issues of their deposition and reported characterization of film plasmonic performance.

1992 ◽  
Vol 270 ◽  
Author(s):  
Haojie Yuan ◽  
R. Stanley Williams

ABSTRACTThin films of pure germanium-carbon alloys (GexC1−x with x ≈ 0.0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) have been grown on Si(100) and A12O3 (0001) substrates by pulsed laser ablation in a high vacuum chamber. The films were analyzed by x-ray θ-2θ diffraction (XRD), x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), conductivity measurements and optical absorption spectroscopy. The analyses of these new materials showed that films of all compositions were amorphous, free of contamination and uniform in composition. By changing the film composition, the optical band gap of these semiconducting films was varied from 0.00eV to 0.85eV for x = 0.0 to 1.0 respectively. According to the AES results, the carbon atoms in the Ge-C alloy thin film samples has a bonding configuration that is a mixture of sp2 and sp3 hybridizations.


2015 ◽  
Vol 651-653 ◽  
pp. 713-718 ◽  
Author(s):  
Marion Merklein ◽  
Raoul Plettke ◽  
Daniel Junker ◽  
Adam Schaub ◽  
Bhrigu Ahuja

The quality of additive manufactured parts however depends pretty much on the workers experience to control porosity, layer linkage and surface roughness. To analyze the robustness of the Laser Beam Melting (LBM) process a Round Robin test was made in which specimens from four institutes from different countries were tested and compared. For the tests each institute built a set of specimens out of stainless steel 1.4540. The aim of this work is to analyze the influence of the process parameters on the mechanical properties. The results show that there is a high potential for additive manufacturing but also a lot of further research is necessary to optimize this technology.


1999 ◽  
Vol 591 ◽  
Author(s):  
C.H. Yana ◽  
H.W. Yao ◽  
J.M. Van Hove ◽  
A.M. Wowchak ◽  
P.P. Chow ◽  
...  

ABSTRACTGaN films grown on GaAs and sapphire substrates by molecular beam epitaxy (MBE) and metalorganic vapor phase epitaxy (MOVPE) at both low and high temperatures (LT and HT) were characterized by Raman scattering and variable angle spectroscopic ellipsometry (VASE). Optical phonon spectra of GaN films are obtained through back-scattering geometry. Crystal quality of these films was qualitatively examined using phonon line-width. Phonon spectra showed that the HT GaN has wurtzite crystal structure, while LT GaN and GaN/GaAs have cubic-like structures. Thickness nonuniformity and defect-related absorption can be characterized by pseudo dielectric functions directly. Surface roughness also can be determined by using an effective-medium approximation (EMA) over-layer in a VASE analysis. Anisotropic optical constants of GaN, both ordinary and extraordinary, were obtained in the spectral range of 0.75 to 6.5 eV with the consideration of surface roughness, through the small and large angles of incidence, respectively. The film thickness of the GaN was accurately determined via the analysis as well.


Author(s):  
Daqun Bao ◽  
Yi Zhang ◽  
Hang Guo

This paper presents the growth and characterization of PZT thin films by using the sol-gel technology. In this paper, we study the influences of annealing process and different substrates on the orientation and crystalline quality of PZT thin films. The crystallographic structures are tested by using X-ray diffractometer (XRD), and the residual stresses of PZT thin films are obtained by calculation from a derived stress-strain equation in XRD analysis. Moreover, surface morphology and microstructure of the films are investigated by using AFM and SEM, and the polarization hysteresis of PZT thin films is measured by using a Sawyer Tower circuit. The results show that PZT thin films prepared by using the sol-gel method have good properties and can be used for developing PZT-based micro and nano devices.


Coatings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1078
Author(s):  
Simon N. Ogugua ◽  
Odireleng Martin Ntwaeaborwa ◽  
Hendrik C. Swart

Currently, pulsed laser deposition (PLD) is a widely used technique to grow thin films for academic research and for industrial applications. The PLD has superior advantages including versatility, control over the growth rate, stoichiometric transfer and unlimited degree of freedom in the ablation geometry compared to other deposition techniques. The primary objective of this review is to revisit the basic operation mechanisms of the PLD and discuss recent modifications of the technique aimed at enhancing the quality of thin films. We also discussed recent progress made in the deposition parameters varied during preparation of luminescent inorganic oxide thin films grown using the PLD technique, which include, among others, the substrate temperature. The advanced technological applications and different methods for film characterization are also discussed. In particular, we pay attention to luminescence properties, thickness of the films and how different deposition parameters affect these properties. The advantages and shortcomings of the technique are outlined.


2006 ◽  
Vol 46 ◽  
pp. 146-151
Author(s):  
Andriy Lotnyk ◽  
Stephan Senz ◽  
Dietrich Hesse

Single phase TiO2 thin films of anatase structure have been prepared by reactive electron beam evaporation. Epitaxial (012)- and (001)-oriented anatase films were successfully obtained on (110)- and (100)-oriented SrTiO3 substrates, respectively. X-ray diffraction and cross section transmission electron microscopy investigations revealed a good epitaxial quality of the anatase films grown on the SrTiO3 substrates.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
A. El-Shaer ◽  
A. R. Abdelwahed

Electrodeposition technique was employed to deposit cuprous oxide Cu2O thin films. In this work, Cu2O thin films have been grown on fluorine doped tin oxide (FTO) transparent conducting glass as a substrate by potentiostatic deposition of cupric acetate. The effect of deposition time on the morphologies, crystalline, and optical quality of Cu2O thin films was investigated.


2012 ◽  
Vol 465 ◽  
pp. 112-117 ◽  
Author(s):  
Wen Liu ◽  
Qing Sen Meng ◽  
Yang Miao ◽  
Feng Hua Chen ◽  
Li Fang Hu

Hard and superlight thin films laminated with boron carbide have been proposed as candidates for strategic use such as armor materials in military and space applications. We prepared Al-Mg-B films by sputter deposition on Si (100) substrates with one AlMgB14 target. The films were characterized by X-ray diffraction, atomic force microscope, GD-OES spectroscopy. The results show that films of AlMgB with different compositions have been deposited by changing the target power and deposition temperature.The influences of substrate temperature and sputtering power on the quality of the films are discussed.


2009 ◽  
Vol 79-82 ◽  
pp. 1535-1538
Author(s):  
Ling Yi Kong ◽  
Fan Yang ◽  
Jin Ma ◽  
Cai Na Luan ◽  
Zhen Zhu

Ga2xIn2(1-x)O3 thin films with different gallium content x [x = Ga/(Ga+In) atomic ratio] have been prepared on -Al2O3 (0001) substrates at 650°C by metalorganic chemical vapor deposition (MOCVD). Structural, electrical and optical properties of these films have been investigated in detail. The XRD analysis revealed that, as the gallium content increased, the crystalline quality of the films decreased. The highest Hall mobility of the films was 41.32 cm2v−1s−1. The absolute average transmittance of the Ga2xIn2(1-x)O3 thin films in the visible range exceeded 91%. The band gap could be tuned from 3.59 to 4.87 eV as gallium content increased.


Sign in / Sign up

Export Citation Format

Share Document