scholarly journals The influence of the ageing-fatigue degradation on the mechanical properties of glass-reinforced composites

2016 ◽  
Vol 18 (1) ◽  
pp. 113-119 ◽  
Author(s):  
Małgorzata Szymiczek ◽  
Maciej Rojek ◽  
Gabriel Wróbel

Abstract Drawing up diagnostic relations between thermal characteristics determined in thermal imaging examinations and mechanical properties, allowing for forecasting the state of material during the use, was a purpose of the work. Research was performed on polyester – glass composites which were subjected to the ageing-fatigue degradation process in a device created specifically for that purpose. It was indicated how to assess the degree of the decline, taking into account the fall in material strength properties. The basis of a method was measurement of changes in temperature in activated thermal processes. Relations between changes of the speed of heating and cooling were related to the bending strength and the modulus of elasticity. Diagnoses were backed up with microscopic examinations.

2021 ◽  
Vol 11 (21) ◽  
pp. 10443
Author(s):  
Michał Łach ◽  
Bartłomiej Kluska ◽  
Damian Janus ◽  
Dawid Kabat ◽  
Kinga Pławecka ◽  
...  

This work aimed to determine the effect of the addition of different types of reinforcing fibers on the strength properties of geopolymers such as flexural and compressive strength. Geopolymers are an attractive alternative to conventional binders and building materials; however, one of the main problems of their widespread use is their low resistance to brittle fracture. To improve the mechanical properties, reinforcement in the form of glass, carbon, and basalt fibers (as grids) was applied to geopolymers in the following work. Additionally, composites with these fibers were produced not only in the matrix of pure geopolymer but also as a hybrid variant with the addition of cement. Furthermore, basalt grids were used as reinforcement for geopolymers not only based on ash but also metakaolin. An additional variable used in the study was the molar concentration of the alkali solution (5 M and 10 M) for the different types of geopolymer samples. The mechanical properties of geopolymer materials and geopolymer–cement hybrids are the highest when reinforcement in the form of carbon fiber is used. Strength values for geopolymers reinforced with basalt mats depend on the number of reinforcement layers and the concentration of the alkaline solution used. All produced composites were tested for compressive strength and bending strength. When using basalt mesh, it was possible to achieve a bending strength of 12 MPa. The highest compressive strength that was achieved was the value of 66 MPa, while for samples not reinforced with fibers, only about 40 MPa was achieved.


Author(s):  
Maria Vasilyeva ◽  
Dmitry Nagornov ◽  
Grigory Orlov

The paper describes the research findings on dynamic and mechanical properties of composite elastomers with high permeability magnetic filling agent capable of rapidly and reversibly changing its properties when exposed to an external magnetic field, which makes it a perspective material for application in a wide range of engineering areas. The research has analyzed the trends in the strength properties of the materials obtained through the use of filling agents of different fineness, content, and structural organization in the final polymer, under different conditions. This allowed to obtain the correlations between the influence of the filler's relative fineness on the dynamic and mechanical properties of composite polymers, and to estimate the trends in the parameters describing the material strength under the complex magnetic and thermal influence. The results obtained by the authors allowed to ground the composition and structural organization of the final material with the best set of dynamic and mechanical properties.


2019 ◽  
Vol 16 (1) ◽  
pp. 60
Author(s):  
Nur Liyana Aifa Mahammad Asri ◽  
Ainil Idzaty Mohamed Anwar ◽  
Nur Atiqah Najib ◽  
Judith Gisip

Composite panels were manufactured from kenaf particles and treated with two different alkali treatments using 2% NaOH and 2% KOH with resin contents of 8% and 10% of phenol formaldehyde (PF) at medium density of 650kg/m3. The objectives of this study were to determine the mechanical properties in terms of its modulus of rupture (MOR), modulus of elasticity (MOE) and internal bond (IB), and physical properties namely thickness swelling (TS) and water absorption (WA) of treated kenaf board. The mechanical and physical tests were performed according to the Malaysian Standard (MS1787:2004). The minimum requirements value for MOE, MOR and IB were 2000 MPa, 14 MPa and 0.45 MPa respectively for furniture grade particleboards for use in humid conditions (PF2). According to Malaysian specifications for physical properties, the maximum requirement for thickness swell is 15%. Results indicated that both treated boards with NaOH and KOH showed an increase in strength properties compared to untreated particleboard. Particleboard treated with KOH exhibited the highest MOR and MOE values, while board with NaOH treatment gave the highest IB value. The boards with treated particles gave better performance in terms of physical properties. There were no significant differences in mechanical properties (MOR, MOE and IB) and physical properties for the different alkali treatment. The values of bending strength and IB strength increased with an increase in resin content, while TS and WA increased with a decrease in resin content. In conclusion, NaOH and KOH treated kenaf particles improved board performance and could be considered as an alternative material for particleboard production.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6550-6560
Author(s):  
Lawrence Aguda ◽  
Babatunde Ajayi ◽  
Sylvester Areghan ◽  
Yetunde Olayiwola ◽  
Aina Kehinde ◽  
...  

Declining availability of the prime economic species in the Nigerian timber market has led to the introduction of Lesser-Used Species (LUS) as alternatives. Their acceptability demands information on the technical properties of their wood. The aim of this study was to investigate the mechanical properties of Ficus vallis-choudae to determine its potential for timber. Three mature Ficus vallis-choudae trees were selected and harvested from a free forest area in Ibadan, Oyo State, Nigeria. Samples were collected from the base (10%), middle (50%), and top (90%) along the sampling heights of each tree, which was further partitioned into innerwood, centrewood, and outerwood across the sampling radial position. Investigations were carried out to determine the age, density, moisture content, impact strength, modulus of elasticity, modulus of rupture, compressive strength parallel-to-grain, and shear strength parallel-to-grain. The mean impact bending strength, modulus of rupture, modulus of elasticity, maximum shear strength parallel-to-grain, and maximum compression strength parallel-to-grain for Ficus vallis-choudae at 12% moisture content were 20.4 N/mm2, 85.8 N/mm2, 709 N/mm2, 10.7 N/mm2, and 33.6 N/mm2, respectively. The study found the species to be dense with high strength properties in comparison with well-known timbers used for constructional purposes.


2021 ◽  
Vol 71 (2) ◽  
pp. 299-304
Author(s):  
Srinivasa Rao Mallipudi ◽  
Tangudu Sai Shankar ◽  
Perumalla Srikar ◽  
Uppda Bhanoji Rao ◽  
Yandra Chandrasekhar ◽  
...  

Abstract In this study, friction stir welding (FSW) and Tungsten gas welding (TIG) processes were used to weld 5 mm thick Al-4.2Mg-0.6Mn-0.4Sc-0.1Zr alloy plates. The FSwelds and TIG welds were tested for mechanical properties (hardness, ultimate tensile strength, bending strength and impact strength) by means of vicker’s hardness machine, universal testing machine and impact test machine respectively. The strength of the base material was higher, compared to the strength of the FSW and TIG welded joints. The strength of the TIG welded joint decreased, compared to the strength of the FSW welded joint. The microstructure features were also observed for base material with the aid of metallurgical microscope and compared the same with the microstructures of FSW and TIG welded joints. FSW change the material strength due to fine-grain refinement in the stir zone in Al-4.2Mg-0.6Mn-0.4Sc-0.1Zr alloy and therefore FS welded joint exhibited 91.6% joint efficiency followed by the TIG welded joint of 69.8%.


Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 649 ◽  
Author(s):  
Heikko Kallakas ◽  
Anti Rohumaa ◽  
Harti Vahermets ◽  
Jaan Kers

In Estonia, hardwoods form approximately 50% of all forest area, where the main species are birch (30%), gray alder (9%), aspen (6%) and black alder (4%). Birch has been extensively used by the veneer-based industry, but species like black alder, gray alder and aspen have not been commonly used by the veneer-based products industry due to the lower quality of this resource. The aim of this research is to determine the effect of different lay-up schemes and usages of gray alder, black alder and aspen on the mechanical properties of plywood, by replacing birch veneer in the plywood core with alternative wood species. The main veneer and plywood characteristics will be evaluated according to the current standards, e.g., veneer strength perpendicular to grain, plywood bonding and bending strength, and modulus of elasticity. All processing parameters will be kept similar to those used generally by birch plywood manufacturers. The results showed that birch and black alder plywood panels had generally the highest bending strength properties, followed by grey alder and aspen. It was also found that, for proper gluing, birch veneers had the lowest glue consumption, 152 g/m2, and aspen had the highest glue consumption, 179 g/m2. It was found that when lower density wood was used in the plywood, the product density increased. Low density wood veneers had higher glue consumption, and also higher compaction in thickness than birch veneers under the same pressure. Overall, it was shown that the wood species used in this study have slightly lower strength properties, but with proper lay-up schemes, these wood species could be successfully used by the veneer-based products industry.


2019 ◽  
Vol 486 (5) ◽  
pp. 558-561
Author(s):  
V. V. Mironov ◽  
L. E. Agureev ◽  
Z. V. Eremeeva ◽  
V. I. Kostikov

New data were obtained on the effect of small additions of magnesium oxide nanoparticles on the mechanical properties of aluminum. For the preparation of samples of composites, cold pressing and sintering of powdered aluminum, including those with copper, were used in the forvacuum. As a result, a significant increase in the strength properties of materials modified with magnesium oxide nanoparticles was found: tensile strength, compression, bending strength, and yield strength.


2010 ◽  
Vol 105-106 ◽  
pp. 549-552
Author(s):  
Jie Liu ◽  
Long Quan Shao ◽  
Yuan Fu Yi ◽  
Bin Deng ◽  
Wei Wei Zhang ◽  
...  

Objective: To study the effects of presintering temperature and temperature rise speed on the physical and mechanical properties of alumina-glass-composite (AGC). Methods: AGC was prepared respectively under the condition that presintered at 1400°C and 1450°C as well as two kind of temperature rise speed. The properties were measured, including density, thermal expansion coefficient, three-point bending strength, fracture toughness, modulus of elasticity and Vicker’s hardness of AGC. Results: With the increasing of presentering temperature and the temperature rise speed, density of AGC decreased, bending strength, fracture toughness, modulus of elasticity increased markedly. There was no difference between three-point bending strength and fracture toughness of AGC that was made by two temperature rise speed to 1450°C. Bending strength of AGC that was made by lower temperature rise speed to 1400°C was the lowest. The Vicker’s hardness of the 1450°C groups was higher than that of the 1400°C groups. Conclusion: Both presintering temperature and the temperature rise speed can influenced the properties of AGC, but the effect of presintering temperature was the most.


2021 ◽  
Vol 60 (1) ◽  
pp. 216-222
Author(s):  
Tao Meng ◽  
Sara Ahmed ◽  
Dawang Dai ◽  
Yue Yu

Abstract In this study, the effect of SiO2/Al2O3 (S/A), Na2O/Al2O3 (N/A) and H2O/Na2O (H/N) molar ratios on bending and compressive strength of geopolymer were investigated. The geopolymerization mechanism was also analyzed from microstructure difference by FTIR. The experimental results showed that compressive strength and bending strength of geopolymer has an opposite reaction under different critical molar ratios. The increase of S/A molar ratio and the decrease of N/A and H/N molar ratios have resulted in an increase of the compressive strength. However, it caused a noticeable decrease in bending strength. The microstructure of geopolymer indicated that the degree of polymerization and cohesion of geopolymer have systematical depending on these critical molar ratios, making the mechanical properties of geopolymer susceptible to different types of loads. This paper reveals the relationship between the microstructure of geopolymer and different mechanical properties and helps to selectively prepare corresponding geopolymer for different loading patterns.


2018 ◽  
Vol 18 (1) ◽  
pp. 125-135
Author(s):  
Sattar H A Alfatlawi

One of ways to improve properties of materials without changing the product shape toobtain the desired engineering applications is heating and cooling under effect of controlledsequence of heat treatment. The main aim of this study was to investigate the effect ofheating and cooling on the surface roughness, microstructure and some selected propertiessuch as the hardness and impact strength of Medium Carbon Steel which treated at differenttypes of heat treatment processes. Heat treatment achieved in this work was respectively,heating, quenching and tempering. The specimens were heated to 850°C and left for 45minutes inside the furnace as a holding time at that temperature, then quenching process wasperformed in four types of quenching media (still air, cold water (2°C), oil and polymersolution), respectively. Thereafter, the samples were tempered at 200°C, 400°C, and 600°Cwith one hour as a soaking time for each temperature, then were all cooled by still air. Whenthe heat treatment process was completed, the surface roughness, hardness, impact strengthand microstructure tests were performed. The results showed a change and clearimprovement of surface roughness, mechanical properties and microstructure afterquenching was achieved, as well as the change that took place due to the increasingtoughness and ductility by reducing of brittleness of samples.


Sign in / Sign up

Export Citation Format

Share Document