Screening of cytotoxic, anti-angiogenic, anti-tumorogenic and antimicrobial activities of Anatolian Vipera ammodytes (Nose-horned viper) venom

2016 ◽  
Vol 41 (6) ◽  
Author(s):  
Naşit İğci ◽  
Ayşe Nalbantsoy ◽  
Leman Gizem Erkan ◽  
Gözde Yılmaz Akça ◽  
Hüsniye Tansel Yalçın ◽  
...  

AbstractObjective:In the present study, we aimed to screen the cytotoxic, antimicrobial, anti-angiogenic and anti-tumorogenic activities of AnatolianMaterial and methods:The cytotoxicity was screened against PC3, HeLa, CaCo-2, U-87MG, MCF-7 and Vero cells by using MTT assay. The antimicrobial activity onResults:The ICConclusion:The results of the present study contributed to the knowledge of the biological activities of Anatolian

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3170
Author(s):  
Wafaa M. Elkady ◽  
Mariam H. Gonaid ◽  
Miriam F. Yousif ◽  
Mahmoud El-Sayed ◽  
Hind A. N. Omar

Active components from natural sources are the current focus in most pharmacological research to provide new therapeutic agents for clinical use. Essential oils from the Pinus species have been traditionally used in medicine. This study aimed to investigate the chemical profile of two Pinus species, Pinus halepensis L. and Pinus pinea Mill, from different altitudes in Libya and study the effect of environmental conditions on the biological activities of essential oils. A clevenger apparatus was used to prepare the essential oils by hydrodistillation. Analyses were done using GC/MS. Anthelmintic and antimicrobial activities were tested against the earthworm Allolobophora caliginosa, gram-positive bacteria, gram-negative bacteria, and fungi. Different chemical profiles were observed among all tested essential oils, and terpenes were the most dominant class. All studied essential oils from the Pinus species exhibited a remarkable anthelmintic activity compared to the standard piperazine citrate drug. Pinus halepensis from both altitudes showed broad-spectrum antimicrobial activity against all tested microorganisms, while Pinus pinea was effective against only Escherichia coli. From these findings, one can conclude that there are variations between studied species. The essential oil compositions are affected by environmental factors, which consequently affect the anthelmintic and antimicrobial activity.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5203
Author(s):  
Saud L. Al-Rowaily ◽  
Ahmed M. Abd-ElGawad ◽  
Abdulaziz M. Assaeed ◽  
Abdelbaset M. Elgamal ◽  
Abd El-Nasser G. El Gendy ◽  
...  

Plants are considered green resources for thousands of bioactive compounds. Essential oils (EOs) are an important class of secondary compounds with various biological activities, including allelopathic and antimicrobial activities. Herein, the present study aimed to compare the chemical profiles of the EOs of the widely distributed medicinal plant Calotropis procera collected from Saudi Arabia and Egypt. In addition, this study also aimed to assess their allelopathic and antimicrobial activities. The EOs from Egyptian and Saudi ecospecies were extracted by hydrodistillation and analyzed via GC-MS. The correlation between the analyzed EOs and those published from Egypt, India, and Nigeria was assessed by principal component analysis (PCA) and agglomerative hierarchical clustering (AHC). The allelopathic activity of the extracted EOs was tested against two weeds (Bidens pilosa and Dactyloctenium aegyptium). Moreover, the EOs were tested for antimicrobial activity against seven bacterial and two fungal strains. Ninety compounds were identified from both ecospecies, where 76 compounds were recorded in Saudi ecospecies and 33 in the Egyptian one. Terpenes were recorded as the main components along with hydrocarbons, aromatics, and carotenoids. The sesquiterpenes (54.07%) were the most abundant component of EO of the Saudi sample, while the diterpenes (44.82%) represented the mains of the Egyptian one. Hinesol (13.50%), trans-chrysanthenyl acetate (12.33%), 1,4-trans-1,7-cis-acorenone (7.62%), phytol (8.73%), and myristicin (6.13%) were found as the major constituents of EO of the Saudi sample, while phytol (38.02%), n-docosane (6.86%), linoleic acid (6.36%), n-pentacosane (6.31%), and bicyclogermacrene (4.37%) represented the main compounds of the Egyptian one. It was evident that the EOs of both ecospecies had potent phytotoxic activity against the two tested weeds, while the EO of the Egyptian ecospecies was more effective, particularly on the weed D. aegyptium. Moreover, the EOs showed substantial antibacterial and antifungal activities. The present study revealed that the EOs of Egyptian and Saudi ecospecies were different in quality and quantity, which could be attributed to the variant environmental and climatic conditions. The EOs of both ecospecies showed significant allelopathic and antimicrobial activity; therefore, these EOs could be considered as potential green eco-friendly resources for weed and microbe control, considering that this plant is widely grown in arid habitats.


Author(s):  
KOSARAJU LAHARI ◽  
RAJA SUNDARARAJAN

Objective: Isatins have emerged as antimicrobial agents due to their broad spectrum of in vitro and in vivo antimicrobial activities. In addition, thiazolidinone also reported to possess various biological activities particularly antimicrobial activity. Due to the importance, we planned to synthesize compounds with isatin functionality coupled with thiazolidinone as possible antitubercular and antimicrobial agents which could furnish better therapeutic results. Methods: In vitro Mycobacterium tuberculosis method and agar streak dilution test are used to estimate antitubercular and antimicrobial potency of title analogs, respectively. Minimum inhibitory concentration of entire title compounds was determined against all tested microorganism such as M. tuberculosis, four Gram-positive, three Gram-negative bacteria, and two fungi. Results: A series of new thiazolidinone substituted Schiff and Mannich bases of 5-nitroisatins were designed and synthesized by a multistep synthesis from isatin. Structures of synthesized compounds are characterized using Fourier-transform infrared, proton nuclear magnetic resonance, mass spectroscopy, and bases of elemental analysis. Mild to good antitubercular and antimicrobial activity was showed by synthesized 5-nitroisatin analogs. The relationship between the biological activity and the functional group variation of the tested compounds was discussed. Conclusion: 3-(4-(3-(4-Aminophenyl)-4-oxothiazolidin-2-yl)phenylimino)-1-((dimethyl amino)methyl)-5-nitroindolin-2-one 6 and 3-(4-(3- (2-aminophenyl)-4-oxothiazolidin-2-yl)phenylimino)-1-((dimethylamino)methyl)-5-nitroindolin-2-one 13 were found to be the most potent compounds of this series which might be extended as a novel class of antimicrobial agents.


2019 ◽  
Author(s):  
Mahmudul Hasan ◽  
Md. Abdus Shukur Imran ◽  
Farhana Rumzum Bhuiyan ◽  
Sheikh Rashel Ahmed ◽  
Parsha Shanzana ◽  
...  

AbstractSeaweeds are able to produce a great variety of secondary metabolites that are characterized by a broad spectrum of biological activities. Two seaweeds species, namelyHypnea musciformisandEnteromorpha intestinalis werestudied to evaluate the phytochemical constituency and antimicrobial activities. First of all, crude extracts of both sea weeds were prepared by two different extraction methods (soaking and water bath) using different solvents. Phytochemicals profiling results revealed the presence of bioactive compounds (flavonoids, alkaloids, tannin, saponin and phenols) in both seaweed extracts. Quantification results for ethanolic extracts ofH. musciformis and E. intestinalisestimated 51 mg and 43 mg tannins in per gram of dried samples and flavonoids contents were found 67 mg and 57 mg/g mg QE/g respectively. Total phenolic contents were determined in terms of gallic acid equivalent (GAE).H. musciformisexhibited higher amount of phenolics (59 ± 0.0002 mg GAE/g) thanE. intestinalisextracts (41 ± 0.0002 mg GAE/g). In antimicrobial activity test, ethanol extractsof H. musciformisandE. intestinaliswere found 10 mm of inhibition diameter against all of the bacterial strains. Besides, methanol extracts ofE. intestinaliswere more susceptible toStaphylococcus aureus and Pseudomonaswhich was close to the inhibition diameter (>15 mm) of the mainstream antibiotic; Gentamicin. Moreover,Klebsiella sp. was found more susceptible to ethanol and methanol extracts of Hypnea musciformisas it showed inhibition zone greater than 15 mm. Both Seaweed extracts possessed higher amount of phytochemicals and showed promising antimicrobial activities when compared with the standards.


2015 ◽  
Vol 10 (6) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Prabodh Satyal ◽  
Bhuwan K. Chhetri ◽  
Noura S. Dosoky ◽  
Ambika Poudel ◽  
William N. Setzer

The essential oil from the dried rhizome of Nardostachys grandiflora, collected from Jaljale, Nepal, was obtained in 1.4% yield, and a total of 72 compounds were identified constituting 93.8% of the essential oil. The rhizome essential oil of N. grandiflora was mostly composed of calarene (9.4%), valerena-4,7(11)-diene (7.1%), nardol A (6.0%), 1(10)-aristolen-9-ol (11.6%), jatamansone (7.9%), valeranal (5.6%), and cis-valerinic acid (5.7%). The chemical composition of N. grandiflora rhizome oil from Nepal is qualitatively very different than those from Indian, Chinese, and Pakistani Nardostachys essential oils. In this study we have evaluated the chemical composition and biological activities of N. grandiflora from Nepal. Additionally, 1(10)-aristolen-9-ol was isolated and the structure determined by NMR, and represents the first report of this compound from N. grandiflora. N. grandiflora rhizome oil showed in-vitro antimicrobial activity against Bacillus cereus, Escherichia coli, and Candida albicans (MIC = 156 μg/mL), as well as in-vitro cytotoxic activity on MCF-7 cells.


2016 ◽  
Vol 28 (1) ◽  
pp. 65-71 ◽  
Author(s):  
Hossein Alishah ◽  
Shahram Pourseyedi ◽  
S. Yousef Ebrahimipour ◽  
Saeed Esmaili Mahani ◽  
Nahid Rafiei

2020 ◽  
Vol 8 (1) ◽  
pp. 7-14
Author(s):  
Turgut Taşkın ◽  
Eray M. Güler ◽  
Şeyda Şentürk ◽  
Damla D. Çelik ◽  
Turan Arabacı ◽  
...  

Background: The genus Achillea is one of the most important genus of the Asteraceae family and many species of Achillea are used in traditional medicine to treat several ailments. Aim: The aim of the current research was to evaluate in vitro cytotoxic activities of n-hexan, chloroform, ethyl acetate and methanol extracts and to isolate the active compounds from the extract showing the strongest cytotoxic activity. In addition to this, it was aimed to evaluate the biological activities (cytotoxic, antioxidant, anti-urease, anticholinesterase, antimicrobial) of different extracts and active compounds from Achillea monocephala. Methods and Materials: The in vitro antioxidant, cytotoxic, anti-urease, anticholinesterase and antimicrobial activities of different extracts from A. monocephala aerial parts were examined. The structures of the active compounds were determined by NMR techniques, UV, IR and LC-MS/MS analysis and their biological potential was examined. Results: The chloroform extract showed strong and selective cytotoxic activity on the cancer cell lines (MDA-MB-231, MCF-7). Besides, this extract exhibited stronger antimicrobial activity than other extracts. Therefore, through activity-guided procedures, luteolin, naringenin and 8-hydroxy-salvigenin compounds were isolated from this extract. The methanol extract showed stronger antioxidant (DPPH, ABTS, CUPRAC) and anticholinesterase activity than other extracts. The n-hexan extract exhibited the highest anti-urease activity. In this study, it was determined that the isolated compounds had a strong biological activity. Naringenin compound had stronger ABTS radical cation scavenging and ferric reducing/antioxidant power, cytotoxic and antimicrobial activity than other compounds. 8-hydroxy-salvigenin compound showed the highest urease and acetylcholinestease enzyme inhibition. Conclusion: The results of this study suggest that the extracts and isolated compounds from the A. monocephala may be used as antioxidant, cytotoxic, anti-urease, anticholinesterase and antimicrobial agents in the future.


2021 ◽  
pp. 94-101
Author(s):  
Vaishali Gupta ◽  
Deepak Vyas

Different types of peptides are produced by cyanobacteria of the genus Nostoc, which are unique in structure and have a wide spectrum of biological activities. The objective of the study to explore different habitats of organism and study antimicrobial activities to improve their pharmaceutical application and drug like properties by structure modification. A cyclic peptide nostophycin was isolated from Nostoc calcicola (MK506349) through freeze dried lyophilization method. Its structure has been elucidated with FT-IR, 1HNMR, 13CNMR and LC-MS. Glycine, d-glutamine, l-phenylamine, d-isoleucine, l-proline and a novel amino acid Ahoa are constituents of nostophycin. 1HNMR, 13CNMR spectroscopy confirmed the number of protons and carbons, and characteristics peak determined the structure and fragmentation pattern through LCMS.  Nostophycin possess Ahoa instead of Adha which makes it different from microcystin. Nostophycin exhibits antimicrobial activity against E.coli, S. aureus, C. albicens and A. niger. A good antifungal activity (9-52 μg/mL) and moderate  antimicrobial activity (concentration 18-52 μg/mL) were found for nostophycin. In case of already known peptides, these molecules may be further exploited to improve pharmaceutical application and future drug development.


Author(s):  
Mamatha S. V ◽  
S. L. Belagali ◽  
Mahesh Bhat ◽  
Vijay M. Kumbar

Background: Coumarin and benzophenone possess a vast sphere of biological activities whereas thiazoles display various pharmacological properties. Hence we focused on incorporation of coumarin and thiazole core to the benzophenone skeleton to enhance the bioactivity anticipating their interesting biological properties. Objective: The objective of the current work is synthesis and biological evaluation of a novel series of coumarin fused thiazole derivatives. Methods: A novel series of Coumarin conjugated thiazolyl acetamide hybrid derivatives were synthesized by multistep reaction sequence and were characterized by the FT-IR, LCMS and NMR spectral techniques. The newly synthesized compounds were screened for anticancer activity by in-silico and in-vitro methods. The cytotoxicity of the synthesized unique compounds had been executed for two different cancer cell lines MCF-7 (Breast cancer) and KB (Oral cancer) in comparison with standard paclitaxel by MTT assay. Results: The compound 7f is the potent motif with an acceptable range of IC 50 values for anticancer activity were 63.54 µg/ml and 55.67 µg/ml, against the MCF-7 and KB cell lines, respectively. Molecule docking model revealed that this compound formed three conventional hydrogen bonds with the active sites of the amino acids MET 769, ARG 817 and LYS 721. Conclusion: Compound 7f with two methyl groups on the phenoxy ring and one 4-position methoxy group on the benzoyl ring, showed a significant cytotoxic effect. An advantageous level of low toxicity against normal cell line (L292) by MTT assay was determined.


2019 ◽  
Vol 17 (1) ◽  
pp. 48-56 ◽  
Author(s):  
Maria Grazia Bonomo ◽  
Caterina Cafaro ◽  
Daniela Russo ◽  
Luana Calabrone ◽  
Luigi Milella ◽  
...  

Background: The advantageous health effects of extracts from different types of plants have been known for centuries and the search for new natural extracts is very important at present. Methods: In this study, the antioxidant and the antimicrobial activities of Aesculus hippocastanum mother tincture (TM) against a range of foodborne bacteria were investigated to determine the major components and the action spectrum and the antimicrobial efficacy of the extract. Results: Results demonstrated a high antioxidant ability; total polyphenolic content was 506.8 ± 15.2mg GAE/100ml and the highest content was found for flavonoids. Moreover, TM demonstrated the antimicrobial activity against all tested bacteria and all Gram-negative bacteria were sensitive with an high antimicrobial activity. The inhibitory activity showed a moderate effect on the growth of 72.7% of strains in presence of different extract MIC. Conclusion: The synergistic actions of bioactive compounds detected in the TM might be on the basis of the antioxidant and biological activities observed. These results can be applied in the pharmaceutical field and also in food preservation, alternative medicine and natural therapies.


Sign in / Sign up

Export Citation Format

Share Document