Relationship between Flower Development, Anthocyanin Accumulation and Activity o f Enzymes Involved in Flavonoid Biosynthesis in Matthiola incana R. Br

1983 ◽  
Vol 38 (7-8) ◽  
pp. 551-555 ◽  
Author(s):  
B. Dangelmayr ◽  
G. Stotz ◽  
R. Spribille ◽  
G. Forkmann

The activity of five enzymes concerning anthocyanin biosynthesis as well as the anthocyanin accumulation were studied during the development of buds and flowers of Matthiola incana. The investigations included the first three enzymes in the anthocyanin pathway, chalcone synthase, chalcone isomerase and flavanone 3-hydroxylase, and the flavonoid-modifying enzymes, flavonoid 3'-hydroxylase and flavonoid 3-O-glucosyltransferase. The bud and flower development was subdivided into eight stages with respect to morphological criteria. On a fresh weight basis, a substantial correlation between anthocyanin content and the activities of all of the five enzymes were found in the various developmental stages. Furthermore, the anthocyanins formed are obviously not or only less subject to degradation. Although all maxima of activity proved to be in buds, clear differences were observed between the five enzymes with regard to increase and stage of maximum activity. The isolation of other enzymes involved in flavonoid biosynthesis is likely to be most successful in the bud stages.

Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1064 ◽  
Author(s):  
Dylan Rothenberg ◽  
Haijun Yang ◽  
Meiban Chen ◽  
Wenting Zhang ◽  
Lingyun Zhang

Almost all flowers of the tea plant (Camellia sinensis) are white, which has caused few researchers to pay attention to anthocyanin accumulation and color changing in tea flowers. A new purple-leaf cultivar, Baitang purple tea (BTP) was discovered in the Baitang Mountains of Guangdong, whose flowers are naturally pink, and can provide an opportunity to understand anthocyanin metabolic networks and flower color development in tea flowers. In the present study, twelve anthocyanin components were identified in the pink tea flowers, namely cyanidin O-syringic acid, petunidin 3-O-glucoside, pelargonidin 3-O-beta-d-glucoside, which marks the first time these compounds have been found in the tea flowers. The presence of these anthocyanins seem most likely to be the reason for the pink coloration of the flowers. Twenty-one differentially expressed genes (DEGs) involved in anthocyanin pathway were identified using KEGG pathway functional enrichment, and ten of these DEG’s screened using venn and KEGG functional enrichment analysis during five subsequent stages of flower development. By comparing DEGs and their expression levels across multiple flower development stages, we found that anthocyanin biosynthesis and accumulation in BTP flowers mainly occurred between the third and fourth stages (BTP3 to BTP4). Particularly, during the period of peak anthocyanin synthesis 17 structural genes were upregulated, and four structural genes were downregulated only. Ultimately, eight critical genes were identified using weighted gene co-expression network analysis (WGCNA), which were found to have direct impact on biosynthesis and accumulation of three flavonoid compounds, namely cyanidin 3-O-glucoside, petunidin 3-O-glucoside and epicatechin gallate. These results provide useful information about the molecular mechanisms of coloration in rare pink tea flower of anthocyanin-rich tea, enriching the gene resource and guiding further research on anthocyanin accumulation in purple tea.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ning Wang ◽  
Xiaochun Shu ◽  
Fengjiao Zhang ◽  
Weibing Zhuang ◽  
Tao Wang ◽  
...  

Lycoris is used as a garden flower due to the colorful and its special flowers. Floral coloration of Lycoris is a vital trait that is mainly regulated via the anthocyanin biosynthetic pathway. In this study, we performed a comparative transcriptome analysis of Lycoris radiata petals at four different flower development stages. A total of 38,798 differentially expressed genes (DEGs) were identified by RNA sequencing, and the correlation between the expression level of the DEGs and the anthocyanin content was explored. The identified DEGs are significantly categorized into ‘flavonoid biosynthesis,’ ‘phenylpropanoid biosynthesis,’ ‘Tropane, piperidine and pyridine alkaloid biosynthesis,’ ‘terpenoid backbone biosynthesis’ and ‘plant hormone signal transduction’ by Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The candidate genes involved in anthocyanin accumulation in L. radiata petals during flower development stages were also identified, which included 56 structural genes (especially LrDFR1 and LrFLS) as well as 27 key transcription factor DEGs (such as C3H, GATA, MYB, and NAC). In addition, a key structural gene namely LrDFR1 of anthocyanin biosynthesis pathway was identified as a hub gene in anthocyanin metabolism network. During flower development stages, the expression level of LrDFR1 was positively correlated with the anthocyanin content. Subcellular localization revealed that LrDFR1 is majorly localized in the nucleus, cytoplasm and cell membrane. Overexpression of LrDFR1 increased the anthocyanin accumulation in tobacco leaves and Lycoris petals, suggesting that LrDFR1 acts as a positively regulator of anthocyanin biosynthesis. Our results provide new insights for elucidating the function of anthocyanins in L. radiata petal coloring during flower development.


2022 ◽  
Vol 23 (2) ◽  
pp. 746
Author(s):  
Bo Li ◽  
Xiangzhan Zhang ◽  
Ruiwei Duan ◽  
Chunhong Han ◽  
Jian Yang ◽  
...  

Anthocyanin accumulation in vacuoles results in red coloration in pear peels. Glutathione S-transferase (GST) proteins have emerged as important regulators of anthocyanin accumulation. Here, a total of 57 PcGST genes were identified in the European pear ‘Bartlett’ (Pyrus communis) through comprehensive genomic analysis. Phylogenetic analysis showed that PcGST genes were divided into 10 subfamilies. The gene structure, chromosomal localization, collinearity relationship, cis-elements in the promoter region, and conserved motifs of PcGST genes were analyzed. Further research indicated that glutamic acid (Glu) can significantly improve anthocyanin accumulation in pear peels. RNA sequencing (RNA-seq) analysis showed that Glu induced the expression of most PcGST genes, among which PcGST57 was most significantly induced. Further phylogenetic analysis indicated that PcGST57 was closely related to GST genes identified in other species, which were involved in anthocyanin accumulation. Transcript analysis indicated that PcGST57 was expressed in various tissues, other than flesh, and associated with peel coloration at different developmental stages. Silencing of PcGST57 by virus-induced gene silencing (VIGS) inhibited the expression of PcGST57 and reduced the anthocyanin content in pear fruit. In contrast, overexpression of PcGST57 improved anthocyanin accumulation. Collectively, our results demonstrated that PcGST57 was involved in anthocyanin accumulation in pear and provided candidate genes for red pear breeding.


2020 ◽  
Author(s):  
Nana Su ◽  
Ze Liu ◽  
Hui Chen ◽  
Mengyang Niu ◽  
Jin Cui

Abstract Background: The biosynthesis of anthocyanin in the hypocotyls of radish (Raphanus sativus L.) sprouts was enhanced by hemin in our preliminary experiments, but the underlying mechanism is unclear. Here, we found that NO (nitric oxide) exerted an essential role in Hemin-regulated anthocyanin biosynthesis, which was supported by the following results.Results: Hemin boosted anthocyanin as well as NO content. NO-scavenger cPTIO (carboxy-PTIO) significantly attenuated hemin-induced increase of anthocyanin content, transcripts of anthocyanin synthesis related genes and positive transcription factors, implying that NO played a prominent role during hemin-induced anthocyanin biosynthesis. Hemin specific inhibitor ZnPP (Zinc Protoporphyrin) strongly reduced anthocyanin content, while, NO donor SNP (Sodium Nitroprusside) addition considerably reversed this inhibition and by contrast, resulted in a significant increase in anthocyanin accumulation, closely paralleling the transcripts of structural genes and transcription factors. Moreover, NO content, NR (nitrate reductase) activity and expression level of NOA (nitric oxide associated factor) were up-regulated by Hemin. Conclusions:Those consequences indicated that NO might work downstream in Hemin-heightened anthocyanin accumulation in radish sprouts.


2018 ◽  
Author(s):  
Yi-Cheng Wang ◽  
Jing-Jing Sun ◽  
Yan-Fen Qiu ◽  
Xiao-Jun Gong ◽  
Li Ma ◽  
...  

AbstractAnthocyanins are the key factors controlling the coloration of plant tissues. However, the molecular mechanism underlying the effects of environmental pH on the synthesis of apple anthocyanins is unclear. In this study, we analyzed the anthocyanin contents of apple calli cultured in media at different pHs (5.5, 6.0, and 6.5). The highest anthocyanin content was observed at pH 6.0. Additionally, the moderately acidic conditions up-regulated the expression of MdMYB3 as well as specific anthocyanin biosynthesis structural genes (MdDFR and MdUFGT). Moreover, the anthocyanin content was higher in calli overexpressing MdMYB3 than in the wild-type controls at different pHs. Yeast one-hybrid assay results indicated that MdMYB3 binds to the MdDFR and MdUFGT promoters in vivo. An analysis of the MdDFR and MdUFGT promoters revealed multiple MYB-binding sites. Meanwhile, electrophoretic mobility shift assays confirmed that MdMYB3 binds to the MdDFR and MdUFGT promoters in vitro. Furthermore, GUS promoter activity assays suggested that the MdDFR and MdUFGT promoter activities are enhanced by acidic conditions, and the binding of MdMYB3 may further enhance activity. These results implied that an acid-induced apple MYB transcription factor (MdMYB3) promotes anthocyanin accumulation by up-regulating the expression of MdDFR and MdUFGT under moderately acidic conditions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gang Hu ◽  
Xiaomeng Yue ◽  
Jinxue Song ◽  
Guipei Xing ◽  
Jun Chen ◽  
...  

Soybean sprouts are a flavorful microgreen that can be eaten all year round and are widely favored in Southeast Asia. In this study, the regulatory mechanism of calcium on anthocyanin biosynthesis in soybean sprouts under blue light was investigated. The results showed that blue light, with a short wavelength, effectively induced anthocyanin accumulation in the hypocotyl of soybean sprout cultivar “Dongnong 690.” Calcium supplementation further enhanced anthocyanin content, which was obviously inhibited by LaCl3 and neomycin treatment. Moreover, exogenous calcium changed the metabolism of anthocyanins, and seven anthocyanin compounds were detected. The trend of calcium fluorescence intensity in hypocotyl cells, as well as that of the inositol 1,4,5-trisphosphate and calmodulin content, was consistent with that of anthocyanins content. Specific spatial distribution patterns of calcium antimonate precipitation were observed in the ultrastructure of hypocotyl cells under different conditions. Furthermore, calcium application upregulated the expression of genes related to anthocyanin biosynthesis, and calcium inhibitors suppressed these genes. Finally, transcriptomics was performed to gain global insights into the molecular regulation mechanism of calcium-associated anthocyanin production. Genes from the flavonoid biosynthesis pathway were distinctly enriched among the differentially expressed genes, and weighted gene co-expression network analysis showed that two MYBs were related to the accumulation of anthocyanins. These results indicated that calcium released from apoplast and intracellular stores in specific spatial-temporal features promote blue light-induced anthocyanin accumulation by upregulation of the expression of genes related to anthocyanin synthesis of “Dongnong 690” hypocotyl. The findings deepen the understanding of the calcium regulation mechanism of blue light-induced anthocyanin accumulation in soybean sprouts, which will help growers produce high-quality foods beneficial for human health.


2015 ◽  
Vol 140 (2) ◽  
pp. 129-135 ◽  
Author(s):  
John R. Stommel ◽  
Judith M. Dumm

Violet to black pigmentation of eggplant (Solanum melongena L.) fruit is caused by anthocyanin accumulation. Model systems demonstrate the role of regulatory genes in the control of anthocyanin biosynthesis. Anthocyanin structural gene transcription requires the expression of at least one member of each of three transcription factor families: MYB, MYC, and WD. To determine the molecular genetic basis for anthocyanin pigmentation in eggplant fruit, we used real-time polymerase chain reaction (PCR) to evaluate the expression of anthocyanin biosynthetic (Chs, Dfr, Ans) and regulatory (Myc, MybB, MybC, Wd) genes in S. melongena genotypes that produce fruit with dark violet (‘Classic’) or white (‘Ghostbuster’) coloration, respectively. Transcript levels and anthocyanin content were evaluated in fruit at various stages of development ranging from small post-anthesis fruit to full-sized marketable fruit. Anthocyanin content increased 9-fold in developing violet-colored ‘Classic’ fruit, whereas low but detectable concentrations were found in white ‘Ghostbuster’ fruit. Chs, Dfr, and Ans as well as MybC and Myc transcript levels were significantly higher in ‘Classic’ in comparison with ‘Ghostbuster’ fruit at comparable stages of fruit development with greatest differences observed for Ans transcript levels. MybC and Myc transcript levels increased in developing ‘Classic’ fruit coincident with increasing anthocyanin content. MybB and Wd transcript levels were not coordinated with changes in biosynthetic transcript levels or anthocyanin concentration.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yun Zhao ◽  
Ting Min ◽  
Miaojin Chen ◽  
Hongxun Wang ◽  
Changqing Zhu ◽  
...  

Red coloration contributes to fruit quality and is determined by anthocyanin content in peach (Prunus persica). Our previous study illustrated that anthocyanin accumulation is strongly regulated by light, and the effect of induction differs according to light quality. Here we showed that both ultraviolet-A (UVA) and ultraviolet-B (UVB) irradiation promoted anthocyanin biosynthesis in “Hujingmilu” peach fruit, and a combination of UVA and UVB had additional effects. The expression of anthocyanin biosynthesis and light signaling related genes, including transcription factor genes and light signaling elements, were induced following UV irradiation as early as 6 h post-treatment, earlier than apparent change in coloration which occurred at 72 h. To investigate the molecular mechanisms for UVA- and UVB-induced anthocyanin accumulation, the genes encoding ELONGATED HYPOCOTYL 5 (HY5), CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), Cryptochrome (CRY), and UV RESISTANCE LOCUS 8 (UVR8) in peach were isolated and characterized through functional complementation in corresponding Arabidopsis (Arabidopsis thaliana) mutants. PpHY5 and PpCOP1.1 restored hypocotyl length and anthocyanin content in Arabidopsis mutants under white light; while PpCRY1 and PpUVR8.1 restored AtHY5 expression in Arabidopsis mutants in response to UV irradiation. Arabidopsis PpHY5/hy5 transgenic lines accumulated higher amounts of anthocyanin under UV supplementation (compared with weak white light only), especially when UVA and UVB were applied together. These data indicated that PpHY5, acting as AtHY5 counterpart, was a vital regulator in UVA and UVB signaling pathway. In peach, the expression of PpHY5 was up-regulated by UVA and UVB, and PpHY5 positively regulated both its own transcription by interacting with an E-box in its own promoter, and the transcription of the downstream anthocyanin biosynthetic genes chalcone synthase 1 (PpCHS1), chalcone synthase 2 (PpCHS2), and dihydroflavonol 4-reductase (PpDFR1) as well as the transcription factor gene PpMYB10.1. In summary, functional evidence supports the role of PpHY5 in UVA and UVB light transduction pathway controlling anthocyanin biosynthesis. In peach this is via up-regulation of expression of genes encoding biosynthetic enzymes, as well as the transcription factor PpMYB10.1 and PpHY5 itself.


Genome ◽  
2018 ◽  
Vol 61 (2) ◽  
pp. 111-120 ◽  
Author(s):  
Si-Won Jin ◽  
Md Abdur Rahim ◽  
Hoy-Taek Kim ◽  
Jong-In Park ◽  
Jong-Goo Kang ◽  
...  

Ornamental cabbage (Brassica oleracea var. acephala) is a winter-grown and important decorative plant of the family Brassicaceae, which displays an exceptional coloration in the central leaves of the rosette. Anthocyanins are the key determinant of the red, purple, and blue colors of vegetative and reproductive parts of many plant species including ornamental cabbage. Total anthocyanin content was measured spectrophotometrically, and the highest anthocyanin content was detected in the red followed by light-red and white ornamental cabbage lines. Anthocyanin biosynthesis is controlled by members of three different transcription factor (TF) families, such as MYB, basic helix-loop-helix (bHLH), and WD40 repeats (WDR), which function as a MBW complex. We identified three MYB, six bHLH, and one WDR TFs that regulate anthocyanin biosynthesis in ornamental cabbage. The expression of the regulatory and biosynthetic genes for anthocyanin synthesis was determined by qPCR. The tested structural genes of the anthocyanin pathway were shown to be up-regulated in the red followed by light-red ornamental cabbage lines; however, the expression levels of the late biosynthetic genes were barely detected in the white ornamental cabbage lines. Among the regulatory genes, BoPAP2 (MYB), BoTT8, BoEGL3.1, and BoMYC1.2 (bHLH), and BoTTG1 (WDR) were identified as candidates for the regulation of anthocyanin biosynthesis. This work could be useful for the breeding of novel colorful ornamental cabbage cultivars.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 384
Author(s):  
Liuwei Qin ◽  
Hui Xie ◽  
Nan Xiang ◽  
Min Wang ◽  
Shouan Han ◽  
...  

As popularly consumed fruit berries, grapes are widely planted and processed into products, such as raisins and wine. In order to identify the influences of different climatic conditions on grape coloring and quality formation, we selected two common varieties of grape berries, ‘Red Globe’ and ‘Xin Yu’, for investigation. Grapes were separately grown in different climates, such as a temperate continental arid climate and a temperate continental desert climate, in Urumqi and Turpan, China, for five developmental stages. As measured, the average daily temperature and light intensity were lower in Urumqi. Urumqi grape berries had a lower brightness value (L*) and a higher red-green value (a*) when compared to Turpan’s. A RT-qPCR analysis revealed higher transcriptions of key genes related to anthocyanin biosynthesis in Urumqi grape berries, which was consistent with the more abundant phenolic substances, especially anthocyanins. The maximum antioxidant activity in vitro and cellular antioxidant activity of grape berries were also observed in Urumqi grape berries. These findings enclosed the influence of climate on anthocyanin accumulation and the antioxidant capacity of grapes, which might enlarge our knowledge on the quality formation of grape berries and might also be helpful for cultivating grapes with higher nutritional value.


Sign in / Sign up

Export Citation Format

Share Document