scholarly journals Coordinated Regulation of Biosynthetic and Regulatory Genes Coincides with Anthocyanin Accumulation in Developing Eggplant Fruit

2015 ◽  
Vol 140 (2) ◽  
pp. 129-135 ◽  
Author(s):  
John R. Stommel ◽  
Judith M. Dumm

Violet to black pigmentation of eggplant (Solanum melongena L.) fruit is caused by anthocyanin accumulation. Model systems demonstrate the role of regulatory genes in the control of anthocyanin biosynthesis. Anthocyanin structural gene transcription requires the expression of at least one member of each of three transcription factor families: MYB, MYC, and WD. To determine the molecular genetic basis for anthocyanin pigmentation in eggplant fruit, we used real-time polymerase chain reaction (PCR) to evaluate the expression of anthocyanin biosynthetic (Chs, Dfr, Ans) and regulatory (Myc, MybB, MybC, Wd) genes in S. melongena genotypes that produce fruit with dark violet (‘Classic’) or white (‘Ghostbuster’) coloration, respectively. Transcript levels and anthocyanin content were evaluated in fruit at various stages of development ranging from small post-anthesis fruit to full-sized marketable fruit. Anthocyanin content increased 9-fold in developing violet-colored ‘Classic’ fruit, whereas low but detectable concentrations were found in white ‘Ghostbuster’ fruit. Chs, Dfr, and Ans as well as MybC and Myc transcript levels were significantly higher in ‘Classic’ in comparison with ‘Ghostbuster’ fruit at comparable stages of fruit development with greatest differences observed for Ans transcript levels. MybC and Myc transcript levels increased in developing ‘Classic’ fruit coincident with increasing anthocyanin content. MybB and Wd transcript levels were not coordinated with changes in biosynthetic transcript levels or anthocyanin concentration.

2020 ◽  
Author(s):  
Nana Su ◽  
Ze Liu ◽  
Hui Chen ◽  
Mengyang Niu ◽  
Jin Cui

Abstract Background: The biosynthesis of anthocyanin in the hypocotyls of radish (Raphanus sativus L.) sprouts was enhanced by hemin in our preliminary experiments, but the underlying mechanism is unclear. Here, we found that NO (nitric oxide) exerted an essential role in Hemin-regulated anthocyanin biosynthesis, which was supported by the following results.Results: Hemin boosted anthocyanin as well as NO content. NO-scavenger cPTIO (carboxy-PTIO) significantly attenuated hemin-induced increase of anthocyanin content, transcripts of anthocyanin synthesis related genes and positive transcription factors, implying that NO played a prominent role during hemin-induced anthocyanin biosynthesis. Hemin specific inhibitor ZnPP (Zinc Protoporphyrin) strongly reduced anthocyanin content, while, NO donor SNP (Sodium Nitroprusside) addition considerably reversed this inhibition and by contrast, resulted in a significant increase in anthocyanin accumulation, closely paralleling the transcripts of structural genes and transcription factors. Moreover, NO content, NR (nitrate reductase) activity and expression level of NOA (nitric oxide associated factor) were up-regulated by Hemin. Conclusions:Those consequences indicated that NO might work downstream in Hemin-heightened anthocyanin accumulation in radish sprouts.


2018 ◽  
Author(s):  
Yi-Cheng Wang ◽  
Jing-Jing Sun ◽  
Yan-Fen Qiu ◽  
Xiao-Jun Gong ◽  
Li Ma ◽  
...  

AbstractAnthocyanins are the key factors controlling the coloration of plant tissues. However, the molecular mechanism underlying the effects of environmental pH on the synthesis of apple anthocyanins is unclear. In this study, we analyzed the anthocyanin contents of apple calli cultured in media at different pHs (5.5, 6.0, and 6.5). The highest anthocyanin content was observed at pH 6.0. Additionally, the moderately acidic conditions up-regulated the expression of MdMYB3 as well as specific anthocyanin biosynthesis structural genes (MdDFR and MdUFGT). Moreover, the anthocyanin content was higher in calli overexpressing MdMYB3 than in the wild-type controls at different pHs. Yeast one-hybrid assay results indicated that MdMYB3 binds to the MdDFR and MdUFGT promoters in vivo. An analysis of the MdDFR and MdUFGT promoters revealed multiple MYB-binding sites. Meanwhile, electrophoretic mobility shift assays confirmed that MdMYB3 binds to the MdDFR and MdUFGT promoters in vitro. Furthermore, GUS promoter activity assays suggested that the MdDFR and MdUFGT promoter activities are enhanced by acidic conditions, and the binding of MdMYB3 may further enhance activity. These results implied that an acid-induced apple MYB transcription factor (MdMYB3) promotes anthocyanin accumulation by up-regulating the expression of MdDFR and MdUFGT under moderately acidic conditions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gang Hu ◽  
Xiaomeng Yue ◽  
Jinxue Song ◽  
Guipei Xing ◽  
Jun Chen ◽  
...  

Soybean sprouts are a flavorful microgreen that can be eaten all year round and are widely favored in Southeast Asia. In this study, the regulatory mechanism of calcium on anthocyanin biosynthesis in soybean sprouts under blue light was investigated. The results showed that blue light, with a short wavelength, effectively induced anthocyanin accumulation in the hypocotyl of soybean sprout cultivar “Dongnong 690.” Calcium supplementation further enhanced anthocyanin content, which was obviously inhibited by LaCl3 and neomycin treatment. Moreover, exogenous calcium changed the metabolism of anthocyanins, and seven anthocyanin compounds were detected. The trend of calcium fluorescence intensity in hypocotyl cells, as well as that of the inositol 1,4,5-trisphosphate and calmodulin content, was consistent with that of anthocyanins content. Specific spatial distribution patterns of calcium antimonate precipitation were observed in the ultrastructure of hypocotyl cells under different conditions. Furthermore, calcium application upregulated the expression of genes related to anthocyanin biosynthesis, and calcium inhibitors suppressed these genes. Finally, transcriptomics was performed to gain global insights into the molecular regulation mechanism of calcium-associated anthocyanin production. Genes from the flavonoid biosynthesis pathway were distinctly enriched among the differentially expressed genes, and weighted gene co-expression network analysis showed that two MYBs were related to the accumulation of anthocyanins. These results indicated that calcium released from apoplast and intracellular stores in specific spatial-temporal features promote blue light-induced anthocyanin accumulation by upregulation of the expression of genes related to anthocyanin synthesis of “Dongnong 690” hypocotyl. The findings deepen the understanding of the calcium regulation mechanism of blue light-induced anthocyanin accumulation in soybean sprouts, which will help growers produce high-quality foods beneficial for human health.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhaofei Duan ◽  
Shiyu Tian ◽  
Guobin Yang ◽  
Min Wei ◽  
Jing Li ◽  
...  

Many basic helix-loop-helix transcription factors (TFs) have been reported to promote anthocyanin biosynthesis in numerous plant species, but little is known about bHLH TFs that inhibit anthocyanin accumulation. In this study, SmbHLH1 from Solanum melongena was identified as a negative regulator of anthocyanin biosynthesis. However, SmbHLH1 showed high identity with SmTT8, which acts as a SmMYB113-dependent positive regulator of anthocyanin-biosynthesis in plants. Overexpression of SmbHLH1 in eggplant caused a dramatic decrease in anthocyanin accumulation. Only the amino acid sequences at the N and C termini of SmbHLH1 differed from the SmTT8 sequence. Expression analysis revealed that the expression pattern of SmbHLH1 was opposite to that of anthocyanin accumulation. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that SmbHLH1 could not interact with SmMYB113. Dual-luciferase assay demonstrated that SmbHLH1 directly repressed the expression of SmDFR and SmANS. Our results demonstrate that the biological function of bHLHs in anthocyanin biosynthesis may have evolved and provide new insight into the molecular functions of orthologous genes from different plant species.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2466
Author(s):  
Yifan Xing ◽  
Ziyi Xie ◽  
Weilei Sun ◽  
Yuying Sun ◽  
Zhenyun Han ◽  
...  

The synthesis of anthocyanin pigments in plants is known to be regulated by multiple mechanisms, including epigenetic regulation; however, the contribution of the RNA-directed DNA methylation (RdDM) pathway is not well understood. Here, we used bisulfite sequencing and Real Time (RT)-quantitative (q) PCR to analyze the methylation level of the promoter of constitutively photomorphogenic 1 (McCOP1) from Malus cv. spp, a gene involved in regulating anthocyanin biosynthesis. The CHH methylation level of the McCOP1 promoter was negatively correlated with McCOP1 RNA expression, and inhibiting DNA methylation caused decreased methylation of the McCOP1 promoter and asymmetric cytosine CHH methylation. We observed that the McCOP1 promoter was a direct target of the RdDM pathway argonaute RISC component 4 (McAGO4) protein, which bound to a McCOP1 promoter GGTTCGG site. Bimolecular fluorescence complementation (BIFC) analysis showed that RNA-directed DNA methylation (McRDM1) interacted with McAGO4 and another RdDM protein, domains rearranged methyltransferase 2 (McDRM2), to regulate the CHH methylation of the McCOP1 promoter. Detection of CHH methylation and COP1 gene expression in the Arabidopsis thalianaatago4, atdrm2 and atrdm1 mutants showed that RDM1 is the effector of the RdDM pathway. This was confirmed by silencing McRDM1 in crabapple leaves or apple fruit, which resulted in a decrease in McCOP1 CHH methylation and an increase in McCOP1 transcript levels, as well as in anthocyanin accumulation. In conclusion, these results show that the RdDM pathway is involved in regulating anthocyanin accumulation through CHH methylation of the McCOP1 promoter.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yun Zhao ◽  
Ting Min ◽  
Miaojin Chen ◽  
Hongxun Wang ◽  
Changqing Zhu ◽  
...  

Red coloration contributes to fruit quality and is determined by anthocyanin content in peach (Prunus persica). Our previous study illustrated that anthocyanin accumulation is strongly regulated by light, and the effect of induction differs according to light quality. Here we showed that both ultraviolet-A (UVA) and ultraviolet-B (UVB) irradiation promoted anthocyanin biosynthesis in “Hujingmilu” peach fruit, and a combination of UVA and UVB had additional effects. The expression of anthocyanin biosynthesis and light signaling related genes, including transcription factor genes and light signaling elements, were induced following UV irradiation as early as 6 h post-treatment, earlier than apparent change in coloration which occurred at 72 h. To investigate the molecular mechanisms for UVA- and UVB-induced anthocyanin accumulation, the genes encoding ELONGATED HYPOCOTYL 5 (HY5), CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), Cryptochrome (CRY), and UV RESISTANCE LOCUS 8 (UVR8) in peach were isolated and characterized through functional complementation in corresponding Arabidopsis (Arabidopsis thaliana) mutants. PpHY5 and PpCOP1.1 restored hypocotyl length and anthocyanin content in Arabidopsis mutants under white light; while PpCRY1 and PpUVR8.1 restored AtHY5 expression in Arabidopsis mutants in response to UV irradiation. Arabidopsis PpHY5/hy5 transgenic lines accumulated higher amounts of anthocyanin under UV supplementation (compared with weak white light only), especially when UVA and UVB were applied together. These data indicated that PpHY5, acting as AtHY5 counterpart, was a vital regulator in UVA and UVB signaling pathway. In peach, the expression of PpHY5 was up-regulated by UVA and UVB, and PpHY5 positively regulated both its own transcription by interacting with an E-box in its own promoter, and the transcription of the downstream anthocyanin biosynthetic genes chalcone synthase 1 (PpCHS1), chalcone synthase 2 (PpCHS2), and dihydroflavonol 4-reductase (PpDFR1) as well as the transcription factor gene PpMYB10.1. In summary, functional evidence supports the role of PpHY5 in UVA and UVB light transduction pathway controlling anthocyanin biosynthesis. In peach this is via up-regulation of expression of genes encoding biosynthetic enzymes, as well as the transcription factor PpMYB10.1 and PpHY5 itself.


2019 ◽  
Vol 20 (20) ◽  
pp. 5228 ◽  
Author(s):  
Min Yu ◽  
Yuping Man ◽  
Yanchang Wang

The R2R3 MYB genes associated with the flavonoid/anthocyanidin pathway feature two repeats, and represent the most abundant classes of MYB genes in plants; however, the physiological role and regulatory function of most R2R3 MYBs remain poorly understood in kiwifruit (Actinidia). Here, genome-wide analysis identified 155 R2R3-MYBs in the ‘Red 5′ version of the Actinidia chinensis genome. Out of 36 anthocyanin-related AccR2R3-MYBs, AcMYB10 was the most highly expressed in inner pericarp of red-fleshed kiwifruit. The expression of AcMYB10 was highly correlated with anthocyanin accumulation in natural pigmentation during fruit ripening and light-/temperature-induced pigmentation in the callus. AcMYB10 is localized in the nuclei and has transcriptional activation activity. Overexpression of AcMYB10 elevates anthocyanin accumulation in transgenic A. chinensis. In comparison, A. chinensis fruit infiltrated with virus-induced gene silencing showed delayed red coloration, lower anthocyanin content, and lower expression of AcMYB10. The transient expression experiment in Nicotiana tabacum leaves and Actinidia arguta fruit indicated the interaction of AcMYB10 with AcbHLH42 might strongly activate anthocyanin biosynthesis by activating the transcription of AcLDOX and AcF3GT. In conclusion, this study provides novel molecular information about R2R3-MYBs in kiwifruit, advances our understanding of light- and temperature-induced anthocyanin accumulation, and demonstrates the important function of AcMYB10 in the biosynthesis of anthocyanin in kiwifruit.


Genes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 81 ◽  
Author(s):  
Qiong He ◽  
Yanjing Ren ◽  
Wenbin Zhao ◽  
Ru Li ◽  
Lugang Zhang

To elucidate the effect of low temperature on anthocyanin biosynthesis in purple head Chinese cabbage, we analyzed anthocyanin accumulation and related gene expression in the seedlings of purple head Chinese cabbage, white head parent Chinese cabbage, and its purple male parent under a normal 25 °C temperature and a low 12 °C temperature. Anthocyanin accumulation in purple lines was strongly induced by low temperature, and the total anthocyanin content of seedlings was significantly enhanced. In addition, nearly all phenylpropanoid metabolic pathway genes (PMPGs) were down-regulated, some early biosynthesis genes (EBGs) were up-regulated, and nearly all late biosynthesis genes (LBGs) directly involved in anthocyanin biosynthesis showed higher expression levels in purple lines after low-temperature induction. Interestingly, a R2R3-MYB transcription factor (TF) gene ‘BrMYB2’ and a basic-helix-loop-helix (bHLH) regulatory gene ‘BrTT8’ were highly up-regulated in purple lines after low temperature induction, and two negative regulatory genes ‘BrMYBL2.1’ and ‘BrLBD38.2’ were up-regulated in the white line. BrMYB2 and BrTT8 may play important roles in co-activating the anthocyanin structural genes in purple head Chinese cabbage after low-temperature induction, whereas down-regulation of BrMYB2 and up-regulation of some negative regulators might be responsible for white head phenotype formation. Data presented here provide new understanding into the anthocyanin biosynthesis mechanism during low temperature exposure in Brassica crops.


2020 ◽  
Vol 40 (3) ◽  
pp. 413-423
Author(s):  
Shuangyi Zhang ◽  
Yixi Chen ◽  
Lingling Zhao ◽  
Chenqi Li ◽  
Jingyun Yu ◽  
...  

Abstract Anthocyanin pigmentation is an important consumption trait of apple (Malus domestica Borkh.). In this study, we focused on the identification of NAC (NAM, ATAF1/2 and CUC2) proteins involved in the regulation of anthocyanin accumulation in apple flesh. A group of MdNACs was selected for comparison of expression patterns between the white-fleshed cultivar ‘Granny Smith’ and red-fleshed ‘Redlove’. Among them, MdNAC42 was screened, which exhibited a higher expression level in red-fleshed than in white-fleshed fruit, and has a positive correlation with anthocyanin content as fruits ripened. Moreover, overexpression of MdNAC42 in apple calli resulted in the up-regulation of flavonoid pathway genes, including MdCHS, MdCHI, MdF3H, MdDFR, MdANS and MdUFGT, thereby increasing the accumulation of anthocyanins, which confirmed the roles of MdNAC42 in anthocyanin biosynthesis. Notably, MdNAC42 was demonstrated to have an obvious interaction with MdMYB10 either in vitro or in vivo by yeast two-hybrid combined with bimolecular fluorescence complementation, further suggesting that MdNAC42 is an important part of the regulatory network controlling the anthocyanin pigmentation of red-fleshed apples. To the best of our knowledge, this is the first report identifying the MdNAC gene as related to anthocyanin accumulation in red-fleshed apples. This study provides valuable information for improving the regulatory model of anthocyanin biosynthesis in apple fruit.


1983 ◽  
Vol 38 (7-8) ◽  
pp. 551-555 ◽  
Author(s):  
B. Dangelmayr ◽  
G. Stotz ◽  
R. Spribille ◽  
G. Forkmann

The activity of five enzymes concerning anthocyanin biosynthesis as well as the anthocyanin accumulation were studied during the development of buds and flowers of Matthiola incana. The investigations included the first three enzymes in the anthocyanin pathway, chalcone synthase, chalcone isomerase and flavanone 3-hydroxylase, and the flavonoid-modifying enzymes, flavonoid 3'-hydroxylase and flavonoid 3-O-glucosyltransferase. The bud and flower development was subdivided into eight stages with respect to morphological criteria. On a fresh weight basis, a substantial correlation between anthocyanin content and the activities of all of the five enzymes were found in the various developmental stages. Furthermore, the anthocyanins formed are obviously not or only less subject to degradation. Although all maxima of activity proved to be in buds, clear differences were observed between the five enzymes with regard to increase and stage of maximum activity. The isolation of other enzymes involved in flavonoid biosynthesis is likely to be most successful in the bud stages.


Sign in / Sign up

Export Citation Format

Share Document