Carbohydrazones of Substituted Salicylaldehydes as Potential Lead Compounds for the Development of Narrow-Spectrum Antimicrobials

2007 ◽  
Vol 62 (7-8) ◽  
pp. 483-486 ◽  
Author(s):  
Eila Pelttari ◽  
Eliisa Karhumäki ◽  
Jane Langshaw ◽  
Hannu Elo

Certain substituted salicylaldehydes are known to have highly potent antimicrobial activity against bacteria and fungi, but the mechanism underlying this remarkable activity is not known, and almost nothing has been reported on the effects of further modification of the structures, such as the formation of hydrazone-type derivatives. We report now a study on the antimicrobial properties of the carbohydrazone derivatives of several substituted salicylaldehydes. The compounds studied were synthesized from ring-substituted salicylaldehydes and carbohydrazide in the mole ratio 2:1. They were tested against Aspergillus niger, Bacillus cereus, Candida albicans, Escherichia coli, Pseudomonas aeruginosa, Saccharomyces cerevisiae and Staphylococcus epidermidis using the agar diffusion method. The carbohydrazone derived from 2,3,4-trihydroxybenzaldehyde had distinctly higher activity than the parent aldehyde in the same molar concentration. This activity was limited to one test organism (S. epidermidis), while the free aldehyde had at least some (in some cases even high) activity against all of the microbes studied. All other ones of the effective carbohydrazone compounds were distinctly less active than the parent salicylaldehydes as such. The hydrazones studied had in general a narrower antimicrobial spectrum than the free aldehydes and are thus of interest as potential lead compounds for the development of narrow-spectrum antimicrobial drugs. The mechanism of action of the aldehydes as well as that of the carbohydrazones is discussed

2013 ◽  
Vol 14 (5) ◽  
pp. 924-929 ◽  
Author(s):  
Reena Kulshrestha ◽  
J Kranthi ◽  
P Krishna Rao ◽  
Feroz Jenner ◽  
V Abdul Jaleel ◽  
...  

ABSTRACT Aim The present study was conducted to evaluate the efficacy of commercially available herbal toothpastes against the different periodontopathogens. Materials and methods Six herbal toothpastes that were commonly commercially available were included in the study. Colgate herbal, Babool, Meswak, Neem active, Dabur red toothpastes were tested for the study whereas sterile normal saline was used as control. Antimicrobial efficacies of dentifrices were evaluated against Streptococcus mutans and Actinobacillus actinomycetemcomitans. The antimicrobial properties of dentifrices were tested by measuring the maximum zone of inhibition at 24 hours on the Mueller Hinton Agar media inoculated with microbial strain using disk diffusion method. Each dentifrice was tested at 100% concentration (full strength). Results The study showed that all dentifrices selected for the study were effective against the entire test organism but to varying degree. Neem active tooth paste gave a reading of 25.4 mm as the zone of inhibition which was highest amongst all of the test dentifrices. Colgate Herbal and Meswak dentifrices recorded a larger maximum zone of inhibition, measuring 23 and 22.6 mm respectively, compared to other toothpastes. All other dentifrices showed the zone of inhibition to be between 17 and 19 mm respectively. Conclusion The antibacterial properties of six dentifrices were studied in vitro and concluded that almost all of the dentifrices available commercially had antibacterial properties to some extent to benefit dental health or antiplaque action. How to cite this article Jenner F, Jaleel VA, Kulshrestha R, Maheswar G, Rao PK, Kranthi J. Evaluating the Antimicrobial Activity of Commercially Available Herbal Toothpastes on Microorganisms Associated with Diabetes Mellitus. J Contemp Dent Pract 2013;14(5):924-929.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Mohammed Rafi Shaik ◽  
Manawwer Alam ◽  
Naser M. Alandis

Castor oil based polyesteramide (CPEA) resin has been successfully synthesized by the condensation polymerization of N-N-bis (2-hydroxyethyl) castor oil fatty amide (HECA) with terephthalic acid and further modified with different percentages of 7, 9, 11, and 13 wt.% of toluene-2,4-diisocyanate (TDI) to obtain poly(urethane-esteramide) (UCPEA), via addition polymerization. TiO2(0.1, 0.2, 0.3, 0.4, and 0.5 wt%) nanoparticles were dispersed in UCPEA resin. The structural elucidation of HECA, CPEA, and UCPEA has been carried out using FT-IR,1H-NMR, and13C-NMR spectroscopic techniques while physicochemical and physicomechanical properties were investigated by standard methods. Thermal stability and molecular weight of UCPEA have been assessed by thermogravimetric analysis (TGA) and gel permeation chromatography (GPC), respectively. Furthermore, the corrosion behavior of UCPEA coatings on mild steel has been investigated by potentiodynamic polarization measurements in different corrosive environments (3.5 wt% HCl, 5 wt% NaCl, 3.5 wt% NaOH, and tap water) at room temperature and surface analysis by scanning electron microscope (SEM) and energy dispersive X-ray (EDX). The antibacterial activities of the UCPEA were tested against bacteria and fungi by agar disc diffusion method. The results of this study have revealed that UCPEA nanocomposite coatings exhibit good physicomechanical, anticorrosion and antimicrobial properties, which can be safely used up to 200°C.


2018 ◽  
Vol 22 (2) ◽  
pp. 267-271
Author(s):  
V.G. Paliy ◽  
I.G. Paliy ◽  
A.O. Dudar ◽  
D.V. Paliy ◽  
A. V. Kulyk

Successful research by scientists of new synthetic substances of various chemical groups contributes to the broadening of the arsenal of antimicrobial drugs for the prevention and treatment of purulent-inflammatory diseases. Antimicrobial drugs, as a rule, suppress pathogenic, invasive, adhesive properties and reduce the resistance of microorganisms to antibiotics in pathogens of supportive inflammatory diseases; significantly increase the effectiveness of treatment of diseases of infectious origin. The purpose of the study was to study the physicochemical, antimicrobial properties of derivatives of menthol, phenol and quinoline. The results of the study of physicochemical, antimicrobial properties of six chemical compounds of menthol, quinoline, and phenol derivatives using the principle of complex research, in which physicochemical, microbiological methods were used, are presented. There was shown that quaternary ammonium compounds of the menthol derivatives were alike white powders with a molecular weight of 581–693, a melting point of 990 to 1850° C. The chemicals are soluble in water, ethanol. Quinoline preparations have a molecular weight of 687; 756, melting point 178–2000°C; dissolved in ethanol. Compounds of phenol had a molecular weight of 111, 112, a melting point of 1020, 1100°C was soluble in ethanol. It has been established that synthesized substances possess a wide spectrum of antimicrobial action on Gram-positive, Gram-negative bacteria, Candida albicans. In antibiotic resistant strains of Staphylococci no markers of resistance to drugs containing in the molecule menthol, phenol, quinoline were found. In complex physical and chemical systems, it was important to study the coefficient of surface tension of solutions of drugs, which was an important objective physical indicator of the molecular state of various drugs. Distilled water was used as a control. Experiments were performed according to a well-known technique. According to the results of the study, in the control the surface tension of water was it was found to be 55,70 dn/cm2. In an experiment with 0,1% solution of decamethoxin; the drug number 2 was 40,80 dn/cm2 and 38,20 dn/cm2. In derivatives of quinoline (DN, drug № 4), was 39,60 dn/cm2 and 34,50 dn/cm2. Solutions of phenol (preparations №5; №6) were characterized by surface tension 32,40–43,50 dn/cm2. Surface tension of solutions of preparations depended on their chemical structure. The antimicrobial properties of the preparations were determined on the museum and clinical strains of microorganisms, which had typical tynctorial, morphological, and cultural characteristics. For a complete biological characterization in strains of Staphylococci, the formation of coagulase enzymes, lecithovitellase, hemolysins, and mannitol fermentation in anaerobic conditions were studied. At 12 museum and clinical strains of bacteria, bacteriostatic and bactericidal effects of six drugs, which are derivatives of menthol (DK, №2), quinoline (DN, №4), phenol (preparations №5, №6), have been detected. Derivatives of menthol acted bactericidal to Staphylococci at doses of 0,48-3,9 μg/ml; Quinoline derivatives in the range of 7,8–15,6 μg/ml; derivatives of phenol 31,25–62,5 μg/ml, respectively. Staphylococci were highly resistant to phenol derivatives (31,25–62,5 μg/ml). Gram-negative bacteria exhibited high resistance to quinoline and phenol derivatives (250–500 μg/ml). Summing up the results of determining the antimicrobial action of antiseptics derivatives of menthol, quinoline, it should be emphasized that the drugs have high activity in relation to Staphylococci (0,24–7,8 μg/ml). Phenol derivatives have low bacteriostatic and bactericidal effects on Gram-negative bacteria (125–500 μg/ml), which limits their use in medicine.


2007 ◽  
Vol 62 (7-8) ◽  
pp. 487-497 ◽  
Author(s):  
Eila Pelttari ◽  
Eliisa Karhumäki ◽  
Jane Langshaw ◽  
Hannu Peräkylä ◽  
Hannu Elo

A systematic survey of the antimicrobial properties of substituted salicylaldehydes and some related aromatic aldehydes is reported. A total of 23 different compounds, each at four different concentrations, were studied using a panel of seven microbes (Aspergillus niger, Bacillus cereus, Candida albicans, Escherichia coli, Pseudomonas aeruginosa, Saccharomyces cerevisiae and Staphylococcus epidermidis) and employing the paper disc agar diffusion method. Several aldehydes, most notably halogenated, nitro-substituted and hydroxylated salicylaldehydes, displayed highly potent activity against the microbes studied, giving inhibitory zones up to 49 mm in diameter (paper disc diameter 6 mm), while unsubstituted benzaldehyde and salicylaldehyde had minimal activity. Further, 4,6-dimethoxysalicylaldehyde had considerable activity against C. albicans and slight activity against S. cerevisiae, while displaying minimal activity against bacteria. Also two aromatic dialdehydes had interesting activity. In general, P. aeruginosa was the least sensitive microbe, a result that is in line with observations from a large screening project, in which this microbe was the one against which the least number of active substances was found. Interestingly, the structure-activity relationships of the aldehydes studied were clearly different for different microbes. Many of the aldehydes tested had such high antimicrobial activity that they are noteworthy candidates for practical applications as well as interesting lead compounds for the development of novel antimicrobial drugs and disinfectants. The structure-activity relationships are discussed in detail. For high activity, substituents are required in benzaldehyde as well as in its 2-hydroxy derivative salicylaldehyde. One hydroxy group alone (at the 2-position) is not enough, but further hydroxylation may produce high activity. The effects of substituents are in some cases dramatic. Halogenation, hydroxylation and nitro substitution may produce highly active compounds, but the effects are not easily predicted nor can they be extrapolated from one microbe to another


2019 ◽  
Vol 11 (3) ◽  
pp. 462-466
Author(s):  
Kehinde O. OLASOJI ◽  
Amos M. MAKINDE ◽  
Bolajoko A. AKINPELU ◽  
Oluwatoyin A. IGBENEGHU ◽  
Musibau O. ISA

The present study aimed to evaluate antimicrobial activity of ethanol, methanol, schnapp (40% alcohol), oil palm wine and Raffia palm wine extracts of moss species Archidium ohioense, Pelekium gratum and Hyophila involuta against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans and Candida pseudotropicalis. The antimicrobial activities of the alcoholic extracts were tested against selected microorganisms using agar well diffusion method. Minimum inhibitory concentrations (MIC) of the extracts were determined using standard methods. The antimicrobial test of the extracts on selected organisms revealed that the methanolic and ethanolic extracts of the mosses studied were inactive against all the bacteria and fungi screened, while the schnapp, Oil palm wine and Raffia palm wine extracts showed significant activity against the selected organisms. The minimum inhibitory concentration (MIC) value of the extracts on the test organisms ranged from 1.25 to 40 mg/ml. The study concluded that the extracts of the mosses studied contain pharmacologically active constituents which may be responsible for their antimicrobial properties.


2019 ◽  
Vol 32 (2) ◽  
pp. 381-384
Author(s):  
G. Venkateshappa ◽  
P. Raghavendra Kumar ◽  
Krishna2

This paper reports the synthesis, characterization and antibacterial activity of N-2-(4-chlorophenyl)acetyl derivatives of various (S)-amino acids such as (S)-alanine, (S)-phenylalanine, (S)-leucine, (S)-methionine, (S)-proline and (S)-tryptophane. These compounds have been successfully synthesized and their structures were confirmed by 1H NMR and 13C NMR and FT-IR spectroscopy. The antimicrobial activity of these six (S)-amino acids derivatives have been evaluated by the agar well diffusion method against pathogens both Gram-positive (S. aureus) and Gram-negative (K. aerogenes, E. coli and P. desmolyticumas) bacteria and fungi (A. flavus and C. albicans). All these compounds have shown mild to moderate antimicrobial activity.


Author(s):  
Shaista Yaqoob ◽  
Fatima Waheed ◽  
Qurban Ali ◽  
Arif Malik

With the growing era, there is tremendous need to produce high potential antimicrobial drugs and medicines from various herbaceous plants and natural resources has been increasing due to increasing multiple drug resistance in pathogens. An experiment was performed to know about antimicrobial activities of various plant extracts. These activities were tested by using agar diffusion method. The bacterial as well as fungal strains were collected and were cultured on agar plates. After that these plates were left in incubator for 24 hours at 37°C to develop zones clearly all round the plant extracts. The activities of bacteria and fungi were determined by using inhibition diameter zones. The clear inhibition zones were found against bacterial strains in study. Antimicrobial activity of acetone, n-hexane and water extracts viz. Acacia nilotica and Artemissia vulgaris tested against Pseudomonas aeruginosa, Bacillus subtils and E. coli as well as Aspergillus niger and Fusarium oxysporum. Acetone extracts were found to be more effective as compared with n-hexane while water extracts show no activity.  


Author(s):  
Nataliya Demchenko ◽  
Zinaida Suvorova ◽  
Yuliia Fedchenkova ◽  
Tamara Shpychak ◽  
Oleh Shpychak ◽  
...  

The aim of this work is to develop methods of synthesis of 3-arylaminomethyl-1-(2-oxo-2-arylethyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromides and aryl-(4-R1-phenyl-5,6,7,8-tetrahydro-2,2a,8a-triazacyclopenta[cd]azulen-1-ylmethyl)-amines and to study their antimicrobial activity against strains of gram-positive and gram-negative bacteria as well as yeast fungi. Materials and methods. 1Н NMR spectra were recorded on Bruker 400 spectrometer operating at frequency of 400 MHz. Antimicrobial activity of the compounds synthesized was evaluated by their minimum inhibitory concentration (MIC) values. Results and discussion. The interaction of 3-arylaminomethyl-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepines with substituted phenacyl bromides produced novel 3-arylaminomethyl-1-(2-oxo-2-arylethyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromides. The latter when refluxed in 10 % solution of NaOH gave aryl-(4-R1-phenyl-5,6,7,8-tetrahydro-2,2a,8a-triazacyclopenta[cd]azulen-1-ylmethyl)-amines. The study of antimicrobial activity of the compounds obtained allowed to find derivatives which are active against С. albicans and S. aureus strains. Among the compounds tested 3-[(41-bromophenylamino)-methyl]-1-[2-(4-methoxyphenyl)-2-oxoethyl]-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromide 5cd appeared to be more active than the reference drug Cefixime and displayed close antimicrobial activity as the antibiotic Linezolid. Conclusions. It was found out that derivatives of 3-arylaminomethyl-1-(2-oxo-2-arylethyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromides display broad spectrum of antimicrobial activity and are able to inhibit growth of both bacteria and fungi. S. aureus and C. albicans turned out to be the most sensitive strains to the compounds tested, MIC was in the range of 6.2-25.0 mg/mL. Gram-negative strains of microorganisms were less sensitive to the compounds evaluated and 5fа was the most active derivative displaying antimicrobial activity at the concentration of 50.0 mg/mL. Antimicrobial activity of triazoloazepinium bromide derivatives was similar to that one of Linezolid and Fluconazole reference drugs and more pronounced than the activity of Cefixime. Hence, the data gathered evidence the feasibility of further study of the antimicrobial properties of the most active compounds in in vivo experiments aiming at assessment of the prospects for the creation of new effective and safe antimicrobial drugs based on them


2019 ◽  
Vol 16 (7) ◽  
pp. 653-688 ◽  
Author(s):  
Leena Kumari ◽  
Salahuddin ◽  
Avijit Mazumder ◽  
Daman Pandey ◽  
Mohammad Shahar Yar ◽  
...  

Heterocyclic compounds are well known for their different biological activity. The heterocyclic analogs are the building blocks for synthesis of the pharmaceutical active compounds in the organic chemistry. These derivatives show various type of biological activity like anticancer, antiinflammatory, anti-microbial, anti-convulsant, anti-malarial, anti-hypertensive, etc. From the last decade research showed that the quinoline analogs plays a vital role in the development of newer medicinal active compounds for treating various type of disease. Quinoline reported for their antiviral, anticancer, anti-microbial and anti-inflammatory activity. This review will summarize the various synthetic approaches for synthesis of quinoline derivatives and to check their biological activity. Derivatives of quinoline moiety plays very important role in the development of various types of newer drugs and it can be used as lead compounds for future investigation in the field of drug discovery process.


Sign in / Sign up

Export Citation Format

Share Document