Power Variables and Bilateral Force Differences During Unloaded and Loaded Squat Jumps in High Performance Alpine Ski Racers

2009 ◽  
Vol 23 (3) ◽  
pp. 779-787 ◽  
Author(s):  
Carson Patterson ◽  
Christian Raschner ◽  
Hans-Peter Platzer
2017 ◽  
Vol 12 (7) ◽  
pp. 916-921 ◽  
Author(s):  
Christopher Thomas ◽  
Paul Comfort ◽  
Paul A. Jones ◽  
Thomas Dos’Santos

Purpose:To investigate the relationships between maximal isometric strength, vertical jump (VJ), sprint speed, and change-of-direction speed (CoDS) in academy netball players and determine whether players who have high performance in isometric strength testing would demonstrate superior performance in VJ, sprint speed, and CoDS measures.Method:Twenty-six young female netball players (age 16.1 ± 1.2 y, height 173.9 ± 5.7 cm, body mass 66.0 ± 7.2 kg) from a regional netball academy performed isometric midthigh pull (IMTP), squat jumps (SJs), countermovement jumps (CMJs), 10-m sprints, and CoDS (505).Results:IMTP measures displayed moderate to strong correlations with sprint and CoDS performance (r = –.41 to –.66). The VJs, which included SJs and CMJs, demonstrated strong correlations with 10-m sprint times (r = –.60 to –.65; P < .01) and CoDS (r = –.60 to –.71; P = .01). Stronger players displayed significantly faster sprint (ES = 1.1–1.2) and CoDS times (ES = 1.2–1.7) and greater VJ height (ES = 0.9–1.0) than weaker players.Conclusion:The results of this study illustrate the importance of developing high levels of lower-body strength to enhance VJ, sprint, and CoDS performance in youth netball players, with stronger athletes demonstrating superior VJ, sprint, and CoDS performances.


2020 ◽  
Vol 10 (24) ◽  
pp. 8831
Author(s):  
Carson Patterson ◽  
Christian Raschner

Eccentric muscular work plays a large role in alpine ski racing. Training with supramaximal eccentric loads (SME) is highly effective to improve eccentric strength but potentially dangerous. Most SME training devices do not allow the athlete to move a barbell freely as they would when performing conventional barbell training. The Intelligent Motion Lifter (IML) allows for safe SME training with a free barbell and no spotters. The IML can be used for free barbell training: a spotter for normal training, eccentric only, concentric only, and squat jumps. It is also a training and testing device for isokinetic and isometric exercise. This commentary addresses the necessity of eccentric training for elite alpine ski racers, the development of the IML and its use in training.


Author(s):  
Lisa Steidl-Müller ◽  
Carson Patterson ◽  
Roland Luchner ◽  
Christoph Ebenbichler ◽  
Carolin Hildebrandt ◽  
...  

Abstract Purpose The aim of the present study was to evaluate the trunk strength capacity of alpine ski racers aged 10–18 years, who were tested during the last 15 years, to identify reference values for trunk flexor to extensor strength ratios according to age and sex. Methods In total, 2841 participants (1605 males, 1236 females; 10–18 years) were included, who were pupils of a famous skiing-specific secondary modern school or members of the provincial ski team between 2006 and 2020. The maximum isometric trunk flexion and extension strength was measured using the slightly modified Back Check. Sex-specific differences were assessed with Student’s t test or Mann–Whitney-U test. Univariate analyses of variance or Kruskal–Wallis-H tests were used to assess differences between age groups. Descriptive sex- and age-specific reference values were calculated (norm area: mean ± ½ standard deviation). Results Sex-specific differences were found for both flexion (starting at 11 years) and extension strength (starting at 12 years) (P < 0.001). Lower flexion to extension strength ratios were identified for males (0.89 ± 0.18) compared with females (0.82 ± 0.15), but the ratios remained constant across age groups for both sexes. Conclusion The present study provides age- and sex-specific reference values for trunk flexion to extension strength ratios for 10- to 18-year old youth and adolescent ski racers. The data of the present study represent a large data pool of youth ski racers at a high-performance level; thus, coaches can use the reference values for comparing the ratios of their athletes.


Author(s):  
A. V. Crewe ◽  
M. Isaacson ◽  
D. Johnson

A double focusing magnetic spectrometer has been constructed for use with a field emission electron gun scanning microscope in order to study the electron energy loss mechanism in thin specimens. It is of the uniform field sector type with curved pole pieces. The shape of the pole pieces is determined by requiring that all particles be focused to a point at the image slit (point 1). The resultant shape gives perfect focusing in the median plane (Fig. 1) and first order focusing in the vertical plane (Fig. 2).


Author(s):  
N. Yoshimura ◽  
K. Shirota ◽  
T. Etoh

One of the most important requirements for a high-performance EM, especially an analytical EM using a fine beam probe, is to prevent specimen contamination by providing a clean high vacuum in the vicinity of the specimen. However, in almost all commercial EMs, the pressure in the vicinity of the specimen under observation is usually more than ten times higher than the pressure measured at the punping line. The EM column inevitably requires the use of greased Viton O-rings for fine movement, and specimens and films need to be exchanged frequently and several attachments may also be exchanged. For these reasons, a high speed pumping system, as well as a clean vacuum system, is now required. A newly developed electron microscope, the JEM-100CX features clean high vacuum in the vicinity of the specimen, realized by the use of a CASCADE type diffusion pump system which has been essentially improved over its predeces- sorD employed on the JEM-100C.


Author(s):  
John W. Coleman

In the design engineering of high performance electromagnetic lenses, the direct conversion of electron optical design data into drawings for reliable hardware is oftentimes difficult, especially in terms of how to mount parts to each other, how to tolerance dimensions, and how to specify finishes. An answer to this is in the use of magnetostatic analytics, corresponding to boundary conditions for the optical design. With such models, the magnetostatic force on a test pole along the axis may be examined, and in this way one may obtain priority listings for holding dimensions, relieving stresses, etc..The development of magnetostatic models most easily proceeds from the derivation of scalar potentials of separate geometric elements. These potentials can then be conbined at will because of the superposition characteristic of conservative force fields.


Author(s):  
J W Steeds ◽  
R Vincent

We review the analytical powers which will become more widely available as medium voltage (200-300kV) TEMs with facilities for CBED on a nanometre scale come onto the market. Of course, high performance cold field emission STEMs have now been in operation for about twenty years, but it is only in relatively few laboratories that special modification has permitted the performance of CBED experiments. Most notable amongst these pioneering projects is the work in Arizona by Cowley and Spence and, more recently, that in Cambridge by Rodenburg and McMullan.There are a large number of potential advantages of a high intensity, small diameter, focussed probe. We discuss first the advantages for probes larger than the projected unit cell of the crystal under investigation. In this situation we are able to perform CBED on local regions of good crystallinity. Zone axis patterns often contain information which is very sensitive to thickness changes as small as 5nm. In conventional CBED, with a lOnm source, it is very likely that the information will be degraded by thickness averaging within the illuminated area.


Author(s):  
Klaus-Ruediger Peters

A new generation of high performance field emission scanning electron microscopes (FSEM) is now commercially available (JEOL 890, Hitachi S 900, ISI OS 130-F) characterized by an "in lens" position of the specimen where probe diameters are reduced and signal collection improved. Additionally, low voltage operation is extended to 1 kV. Compared to the first generation of FSEM (JE0L JSM 30, Hitachi S 800), which utilized a specimen position below the final lens, specimen size had to be reduced but useful magnification could be impressively increased in both low (1-4 kV) and high (5-40 kV) voltage operation, i.e. from 50,000 to 200,000 and 250,000 to 1,000,000 x respectively.At high accelerating voltage and magnification, contrasts on biological specimens are well characterized1 and are produced by the entering probe electrons in the outmost surface layer within -vl nm depth. Backscattered electrons produce only a background signal. Under these conditions (FIG. 1) image quality is similar to conventional TEM (FIG. 2) and only limited at magnifications >1,000,000 x by probe size (0.5 nm) or non-localization effects (%0.5 nm).


Author(s):  
G.K.W. Balkau ◽  
E. Bez ◽  
J.L. Farrant

The earliest account of the contamination of electron microscope specimens by the deposition of carbonaceous material during electron irradiation was published in 1947 by Watson who was then working in Canada. It was soon established that this carbonaceous material is formed from organic vapours, and it is now recognized that the principal source is the oil-sealed rotary pumps which provide the backing vacuum. It has been shown that the organic vapours consist of low molecular weight fragments of oil molecules which have been degraded at hot spots produced by friction between the vanes and the surfaces on which they slide. As satisfactory oil-free pumps are unavailable, it is standard electron microscope practice to reduce the partial pressure of organic vapours in the microscope in the vicinity of the specimen by using liquid-nitrogen cooled anti-contamination devices. Traps of this type are sufficient to reduce the contamination rate to about 0.1 Å per min, which is tolerable for many investigations.


Author(s):  
Lee D. Peachey ◽  
Lou Fodor ◽  
John C. Haselgrove ◽  
Stanley M. Dunn ◽  
Junqing Huang

Stereo pairs of electron microscope images provide valuable visual impressions of the three-dimensional nature of specimens, including biological objects. Beyond this one seeks quantitatively accurate models and measurements of the three dimensional positions and sizes of structures in the specimen. In our laboratory, we have sought to combine high resolution video cameras with high performance computer graphics systems to improve both the ease of building 3D reconstructions and the accuracy of 3D measurements, by using multiple tilt images of the same specimen tilted over a wider range of angles than can be viewed stereoscopically. Ultimately we also wish to automate the reconstruction and measurement process, and have initiated work in that direction.Figure 1 is a stereo pair of 400 kV images from a 1 micrometer thick transverse section of frog skeletal muscle stained with the Golgi stain. This stain selectively increases the density of the transverse tubular network in these muscle cells, and it is this network that we reconstruct in this example.


Sign in / Sign up

Export Citation Format

Share Document