The impact of temperature on seed germination in bambara groundnut (Vigna subterranea (L.) Verdc) landraces

2003 ◽  
Vol 31 (2) ◽  
pp. 259-273
Author(s):  
F.J. Massawe ◽  
S.N. Azam-Ali ◽  
J.A. Roberts
2021 ◽  
Vol 6 (5) ◽  
Author(s):  
Gibson Lucky Arueya

Bambara groundnut (Vigna subterranea) is an under-exploited pulse rich in starch. Scientific data about the impact of varying degrees of succinylation on its starch content are sparse. Amidst the rising demand for such modified starch variants, bridging this information gap is necessary. Isolated starch from Bambara groundnut seeds was succinylated (2-14g succinic anhydride /100g starch extracted) and thereafter the degree of succinylation was evaluated. Physicochemical, functional, and microstructural characteristics of native and succinylated variants of the Bambara starch (SBS) were investigated using established procedures. Amylose content increased marginally (av.17%) among some samples. Water and oil absorption capacities peaked at 2.498 and 0.7185g /g of starch respectively. Pasting viscosities (5682-7025.5cP) increased irrespective of the order of substitution. X-ray diffract grams indicated an increase in crystallinity (A-type) with a strong peak at approximately 23o (2ϴ). This was however lost at higher treatment levels. FTIR spectra of the starches reflected a typical absorption band of a starch backbone. Scanning electron micrographs of succinylated starches were generally oval, exhibiting surface cracks sizes (13.55-44.25µm). Succinylated Bambara groundnut starches at low treatment levels (2-4%) may prove valuable in soups and gravies requiring a high viscosity, stability, and clarity. At higher treatment levels, non-food applications may just be the right outlet.


2018 ◽  
Vol 30 (2) ◽  
pp. 19-28
Author(s):  
A. J. Oludare ◽  
J. I. Kioko ◽  
A. A. Akeem ◽  
A. T. Olumide ◽  
K. R. Justina ◽  
...  

Nine accessions of Bambara groundnut (Vigna subterranea (L.) Verdc.,syn. Voandzeia subterranea (L.) Thouars ex DC.)  obtained from National Centre for Genetic Resources and Biotechnology (NACGRAB), Ibadan, Oyo state, were assessed for their genetic and phylogenetic relatedness through electrophoretic analysis of the seed proteins. 0.2g of the seeds were weighed and macerated with mortar and pestle in 0.2M phosphate buffer containing 0.133M of acid (NaH2PO4) and 0.067 of base (Na2HPO4) at pH 6.5. Protein characterization with standard marker revealed that the seeds of the nine accessions contained proteins (B.S.A, Oval Albumin, Pepsinogen, Trypsinogen and Lysozyme) with molecular weights ranging from 66kda and above, 45 – 65 kDa, 44 – 33 kda, 32-24 kDa and 23-14 kDa, respectively. The student T-test revealed that accessions B, C, E, F, H and I have molecular weights not significantly different from one another (P<0.05) while samples A, D and G showed significantly different values (P>0.05). All the accessions had at least two proteins and two major bands in common. The study revealed intra-specific similarities and genetic diversity in protein contents among the nine accessions of Bambara groundnut (Vigna subterraranea (L.) Verdc.syn


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 338
Author(s):  
Naeem Ahmed ◽  
Asad Masood ◽  
Kim S. Siow ◽  
M. F. Mohd Razip Wee ◽  
Rahmat Zaki Auliya ◽  
...  

In general, seed germination is improved by low-pressure plasma (LPP) treatment using precursors such as air, nitrogen, argon, or water (H2O). Here, H2O-based LPP treatment using the optimized parameters of 10 W and 10 s improves the germination of Bambara groundnut seeds by 22%. LPP increases the wettability and roughness of the seed hilum while oxidizing the surface with carboxyl and amine groups. In this H2O-based treatment of Bambara groundnut seeds, combinatory etching and chemical modification facilitated the imbibition process and increased the germination percentage. The success of this method has the potential to be scaled up to solve food security with seeds otherwise facing germination-related issues.


Genome ◽  
2001 ◽  
Vol 44 (6) ◽  
pp. 995-999 ◽  
Author(s):  
H I Amadou ◽  
P J Bebeli ◽  
P J Kaltsikes

Random amplified polymorphic DNA (RAPD) markers were used to assess genetic diversity in Bambara groundnut (Vigna subterranea L.) germplasm using 25 African accessions from the collection in the International Institute for Tropical Agriculture, Ibadan, Nigeria. Fifty random decamer primers were screened to assess their ability to detect polymorphism in bambara; 17 of them were selected for this study. Considerable genetic diversity was found among the V. subterranea accessions studied. The relationships among the 25 accessions were studied by cluster analysis. The dendrograms showed two main groups of accessions mainly along the lines of their geographic origin. It is concluded that RAPD can be used for germplasm classification in bambara groundnut and hence for improving this crop.Key words: germplasm, PCR, RAPD, Vigna subterranea.


Weed Science ◽  
2018 ◽  
Vol 67 (1) ◽  
pp. 68-76 ◽  
Author(s):  
Nadeem Iqbal ◽  
Sudheesh Manalil ◽  
Bhagirath S. Chauhan ◽  
Steve W. Adkins

AbstractSesbania [Sesbania cannabina(Retz.) Pers.] is a problematic emerging weed species in Australian cotton-farming systems. However, globally, no information is available regarding its seed germination biology, and better understanding will help in devising superior management strategies to prevent further infestations. Laboratory and glasshouse studies were conducted to evaluate the impact of various environmental factors such as light, temperature, salt, osmotic and pH stress, and burial depth on germination and emergence of two Australian biotypes ofS. cannabina. Freshly harvested seeds of both biotypes possessed physical dormancy. A boiling-water scarification treatment (100±2 C) of 5-min duration was the optimum treatment to overcome this dormancy. Once dormancy was broken, the Dalby biotype exhibited a greater germination (93%) compared with the St George biotype (87%). The nondormant seeds of both biotypes showed a neutral photoblastic response to light and dark conditions, with germination marginally improved (6%) under illumination. Maximum germination of both biotypes occurred under an alternating temperature regime of 30/20 and 35/25 C and under constant temperatures of 32 or 35 C, with no germination at 8 or 11 C. Seed germination of both biotypes decreased linearly from 87% to 14% with an increase in moisture stress from 0.0 to −0.8 MPa, with no germination possible at −1.0 MPa. There was a gradual decline in germination for both biotypes when imbibed in a range of salt solutions of 25 to 250 mM, with a 50% reduction in germination occurring at 150 mM. Both biotypes germinated well under a wide range of pH values (4.0 to 10.0), with maximum germination (94%) at pH 9.0. The greatest emergence rate of the Dalby (87%) and St George (78%) biotypes was recorded at a burial depth of 1.0 cm, with no emergence at 16.0 cm. Deep tillage seems to be the best management strategy to stopS. cannabina’s emergence and further infestation of cotton (Gossypium hirsutumL.) fields. The findings of this study will be helpful to cotton agronomists in devising effective, sustainable, and efficient integrated weed management strategies for the control ofS. cannabinain cotton cropping lands.


PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0204817 ◽  
Author(s):  
Juliet Mubaiwa ◽  
Vincenzo Fogliano ◽  
Cathrine Chidewe ◽  
Evert Jan Bakker ◽  
Anita R. Linnemann

2021 ◽  
Author(s):  
Shahab IbrahimPour ◽  
Alireza KhavaninZadeh ◽  
Ruhollah Taghizadeh mehrjardi ◽  
Hans De Boeck ◽  
Alvina Gul

Abstract Destructive mining operations are affecting large areas of natural ecosystems, especially in arid lands. The present study aims at investigating the impact of iron mine exploitation on vegetation and soil in Nodoushan (Yazd province, central Iran). Based on the dominant wind, topography, slope, vegetation and soil of the area, soil and vegetation parameters close to ​the mine were recorded and analyzed according to the distance from the mine. In order to obtain the vegetation cover, a transect and plot on the windward and leeward side of the mine, with 100 m intervals and three replicates at each sampling location was used, yielding 96 soil samples. The amount of dust on the vegetation, the seed weight and seed germination rate of Artemisia sp. as the dominant species within the area, and the soil microbial respiration were measured. The relationship between vegetation cover and distance from the mine was not linear, which was due to an interplay between pollution from the mine and local grazing, while other factors did increase or decrease linearly. The results showed that, as the distance from the mine increased, the weight of 1000 seeds of Artemisia sp. was significantly increased from 271 to 494 mg and seed germination rate and soil microbial respiration were significantly increased from 11.7 to 48.4 % and from 4.5 to 5.9 mg CO2 g− 1 soil day− 1 respectively, while the amount of dust significantly decreased from 43.5 to 6 mg (g plant)−1 between the distance of 100 to 600 m from the mine in the leeward direction. A similar trend was observed in the windward side, though negative effects were lower compared to the same distance along the leeward sample locations. The direct and indirect effects on plant growth and health from mining impacts generally decreased linearly with increasing distance from the mine, up to at least 600 m. Our study serves as a showcase for the potential of bio-indicators as a cost-effective method for assessing impacts of mining activities on the surrounding environment.


2020 ◽  
Vol 21 (7) ◽  
Author(s):  
Siti Fatimah ◽  
ARIFFIN ARIFFIN ◽  
ARDIARINI NOER RAHMI ◽  
KUSWANTO KUSWANTO

Abstract. Fatimah S, Ariffin, Rahmi AN, Kuswanto. 2020. Tolerance and determinants of drought character descriptors of the Madurese landrace bambara groundnut (Vigna subterranea). Biodiversitas 21: 3108-3116. Bambara groundnut (Vigna subterranea L. Verdc.) is legume of African origin overlooked in Indonesia. It has underdeveloped in Indonesia; for example, in East Java, it is only cultivated in Gresik, Lamongan, and Bangkalan of Madura. This plant can potentially be developed in dry lands, such as Madura as it has the ability to grow and develop well in a dry environment with low nutrient level. At present, there are sparse researches on the selection and determination of the drought-tolerant character descriptors of bambara groundnut in Indonesia. The present study used the expected lines of bambara groundnut selected from local lines of various regions in Indonesia using the nested design. The results showed that the drought stress treatment led to stunted growth of 12 bambara groundnut genotypes, including the number of leaves, plant height, canopy diameter, leaf thickness, number of flowers, number of stems or branches, number of internodes, length of leaf stems, root length, root wet weight, canopy wet weight, canopy dry weight, root dry weight, and leaf chlorophyll content. However, drought leads to a slight increase in the width and length of the stomata opening and leaf proline contents. The cluster analysis based on stress index and sensitivity index can classify 3 expected lines originating from Gresik Regency (G1, G2, G3), falling into the drought stress-tolerant category. Accumulated proline contents cannot be used as a descriptor of tolerance to drought stresses in bambara groundnut since the expected lines with an increase in proline contents in leaves during drought stresses based on the cluster analysis do not fall into the genotypic cluster tolerant to drought stresses.


2019 ◽  
pp. 1-12 ◽  
Author(s):  
Justina Y. Talabi ◽  
Babawande A. Origbemisoye ◽  
Beatrice O. Ifesan ◽  
Victor N. Enujuigha

The nutrient composition and the acceptability of biscuit from composite flours of wheat, Bambara groundnut (Vigna subterranea), Ground bean seed (Macrotyloma) and Moringa seed (Moringa oleifera) were evaluated. Bambara groundnut (Vigna subterranea), Ground bean seed (Macrotyloma) and Moringa seed (Moringa oleifera) were dried, and processed into flour. The flour blends developed was used as a substitute for wheat flour as composite flour. The resulting mixtures were then used to produce biscuits at different ratios of wheat flour to flour blends; 100:0, 90:10, 80:20 and 70:30 level of the flour blends. The pasting properties, proximate composition, minerals, physical (spread ratio, weight, thickness and colour) and sensory properties of the composite biscuit were evaluated. The pasting properties of the flours showed that pasting temperature ranged from 68.50°C - 70.0°C and the peak viscousity range from 101.17 RVU – 207.17 RVU, while Break down (43.0 RVU) was highest in 90% wheat: 10% (Bambara- groundnut-ground bean seed- moringa seed flour) (WFF1). The protein content increased from 12.50% in the control (100% wheat flour) to a range of 14.40% - 16.19% in the biscuits; crude fibre decreased from 2.83 to 2.40 - 1.84%, ash content increased from 1.26% to a range of 1.53 - 2.01%, while carbohydrate and energy value reduced from 69.20 to 65.54 - 63.36% and 384.04 Kcal/100 g to 391.34 - 391.55 Kcal/100 g respectively. As the ratio of blends level increase, the thickness, diameter and weight increased but the spread ratio decreased. In conclusion incorporation of bambara groundnut, ground bean seed and moringa seed flour blends played important role in enhancing the nutritional properties of biscuits through improving their protein content, energy value and mineral elements especially calcium and potassium.


Sign in / Sign up

Export Citation Format

Share Document