scholarly journals COMPARISON OF KINETIC MODELS FOR BIOGAS PRODUCTION FROM RICE STRAW

2017 ◽  
Vol 6 (2) ◽  
pp. 107-111 ◽  
Author(s):  
Lukhi Mulia Shitophyta ◽  
Maryudi Maryudi ◽  
Budiyono Budiyono

The rising of global energy demand has led to an energy crisis, especially fossil energy. The development of renewable energies is needed to overcome the energy crisis. Biogas is one of renewable energies (biofuels) which is developed to minimize the dependency on fossil fuels. Biogas can be derived from agricultural wastes such as rice straw. The aim of this research was to compare the kinetic models of biogas production form rice straw using the linear and exponential equations models. This research was conducted at the total solid (TS) content of 20%, 22% and 24%. The result showed that the exponential equation had a better correlation than the linear equation on the ascending period of biogas production, while linear equation was better than exponential equation during descending period.

Author(s):  
Ugwu Tochukwu Nicholas ◽  
Nwachukwu Augusta Anuli ◽  
Ogbulie Toochukwu Ekwutosi ◽  
Anyalogbu Ernest Anayochukwu

Enormous quantities of plant biomass are generated annually, as agricultural wastes. Lignocellulose is the main structural constituent of plants and represents the primary source of renewable organic matter on earth. This study was carried out to evaluate the lignocellulose composition, proximate and selected physicochemical characteristics of some selected plant-based substrates for biogas production. The substrates were: Corn cobs, Rice straw and Water hyacinth (Eichhorniacrassipes). They were collected, cut, dried for 72 hours at 320C, milled and subjected to hemicellulose, lignin and cellulose compositional analyses, using the standard Sox let extraction method. Standard methods were employed for proximate and physicochemical analyses. Results of the compositional evaluation showed that corn cob has the highest percentages of cellulose (42.0%), while extractives content was least (2.18%) in Rice straw. For the proximate analysis, the percentage carbohydrates (24.22) and ash (24.40) were highest in rice straw, while fat content  had the least values of 0.65%  recorded in corn cobs. The results of the physicochemical analysis showed that Rice straw had the highest values of TS (94.55%) and phosphorus (928.57mg/kg), Corn cob had the highest TVS (85.53%) and organic carbon (50.46%) while Water hyacinth recorded the highest Nitrogen content (2.33%). They are good substrates for energy generation, and lignocellulosic biomass holds a huge potential to meet the current energy demand of the modern world. The knowledge of the lignocellulosic composition of the biomass would help in choosing appropriate pretreatment measures to achieve better hydrolysis which would translate to higher biogas yield.


2018 ◽  
Vol 156 ◽  
pp. 03055 ◽  
Author(s):  
Bakti Jos ◽  
Fariha Hundagi ◽  
Rizqi Pindy Wisudawati ◽  
Budiyono ◽  
Siswo Sumardiono

Biogas is a renewable energy which can be used as an alternative source to replace fossil fuels. Recently, the use of energy has become an important issue because the oil sources and natural gas are depleting. Utilization of carica waste to produce biogas can reduce the consumption of commercial energy sources such as kerosene as well as the use of firewood. Biogas is produced by the process of organic material digestion by certain anaerobic bacterial activity in anaerobic digester. In this study we studied the influence of LS-AD and SS-AD methods, the effect of C / N ratio on biogas yield obtained and kinetics of biogas production reaction. The study was conducted by making a total solid variation of 7%, 9%, 11%, 13%, 19%, 21%, 23% and C/N ratio 25 and 30. The study started with carica waste collection process and examination of the total composition of solids and water content. Thereafter, calculation and determination of variation of C / N ratio by mixing the substrate with inoculum and urea into the reactor. Observe the volume of biogas produced every two-day intervals. The highest biogas production rate of 1.7825 ml/g TS day was obtained from carica solid waste variable by liquid state anaerobic disgestion and C/N 25.


Elkawnie ◽  
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Lukhi Mulia Shitophyta ◽  
Anisa Salsabila ◽  
Firanita Anggraini ◽  
Siti Jamilatun

Abstract: Biogas promises bioenergy to be developed as a renewable fuel to reduce the fossil energy crisis. Biogas raw material can be derived from tofu liquid waste. Biogas is processed by anaerobic digestion. This study aimed to develop a simulation of the kinetic model variations of biogas production from tofu liquid waste. The results showed that the ascending limb of the exponential equation had a greater coefficient (R2 = 1) than the ascending limb of the linear equation (R2 = 0.9574). The descending limb of the linear equation had a better coefficient (R2 = 0.9574) than the descending limb of the exponential equation (R2 = 0.95). The Gaussian model had the greatest R2 of 0.9937. Logistic growth had the greatest coefficient (R2 = 0.9951) compared to modified Gompertz (R2 = 0.9817) and exponential rise to maximum (R2 = 0.9852) in the simulation of cumulative biogas production. The fit model for kinetic biogas production from tofu liquid waste is Gaussian Model.Abstrak: Biogas merupakan salah satu bioenergi yang menjanjikan untuk dikembangkan dalam mengurangi krisis energi fosil. Bahan baku biogas dapat berasal dari limbah cair tahu yang diolah secara anaerobic digestion. Penelitian ini bertujuan untuk mengembangkan variasi model simulasi kinetika produksi biogas dari limbah cair tahu. Hasil penelitian menunjukkan bahwa persamaan eksponensial untuk grafik kenaikan memilki koefisien yang lebih besar (R2 = 1) dibandingkan grafik kenaikan dengan persamaan linier (R2 = 0,9574). Grafik penurunan pada persamaan linier memiliki nilai koefisien lebih besar (R2 = 0,9574) dibandingkan grafik penurunan pada persamaan eksponensial (R2 = 0,95). Model Gaussian menghasilkan nilai  koefisien tertinggi R2 = 0,9937. Logistic growth menghasilkan nilai R2 terbesar (0,9951) dibandingkan modified Gompertz (R2 = 0,9817) dan exponential rise to maximum (R2 = 0,9852) pada simulasi produksi biogas kumulatif. Model yang paling cocok untuk kinetika produksi biogas dari limbah cair adalah model Gaussian.


2021 ◽  
Vol 9 ◽  
Author(s):  
Attaso Khamwichit ◽  
Sakkarin Wattanasit ◽  
Wipawee Dechapanya

The rapid growth of energy demand and consumption from fossil fuels has been of great concern since the last decade. Renewable energy, including biogas production from wastes, has been studied to ease up the energy crisis problems. This study aims to synthesize bio-cellulose acetate (CA) membranes from agricultural waste and to study its efficiency in the removal of CO2 from biogas. The bio-CA membranes were synthesized from acetylation of bacterial cellulose (BC) and obtained from coconut juice residues (CJRs). The results showed that both chemical and physical characteristics of the bio-CA membrane were compared with those of the chemical CA membranes. The CO2 removal capacity of the bio-CA membranes was tested in a membrane separation unit. The maximum CO2 selectivity of 29.53 was achieved when using the bio-CA membrane with a thickness of 0.05 mm under the feed pressure of 0.1 MPa. Thick CA membranes exhibited better CO2 selectivity performance, particularly at low operating pressure. However, the CO2/CH4 separation factor decreased in the high-pressure region, probably because of the plasticization of the gas components. Eco-efficiency was evaluated to determine the optimal process conditions. In terms of eco-efficiency, the results suggested that the optimal condition was a bio-CA membrane of 0.05-mm thickness and pressure of 0.1 MPa. The implication of this study is promoting a zero-waste environment in which the agricultural residues could be potentially used in the synthesis of high-value CA membranes for biogas purification applications in energy production.


2016 ◽  
Vol 3 (3) ◽  
pp. 185
Author(s):  
Achmad Zaki ◽  
Heru Agus Santoso

Krisis energi dunia juga terjadi di Indonesia. Cadangan energi di Indonesia terutama energi fosil (minyak bumi, batubara, dan gas alam) semakin hari semakin menyusut. Ketersediaan akan energi fosil juga semakin berkurang karena peningkatan konsumsi energi per kapita. Untuk memprediksi krisis energi di Indonesia, paper ini mengusulkan pengembangan sistem inferensi fuzzy sukamoto untuk klasifikasi krisis energi berdasarkan parameter jumlah produksi, konsumsi energi dan faktor penggerak kebutuhan energi, yakni GDP dan populasi penduduk. Luaran dari sistem ini adalah klasifikasi berdasarkan parameter tersebut, yaitu kondisi aman, waspada dan krisis. Hasil eksperimen menunjukan sistem yang dibangun menghasilkan tingkat akurasi pada minyak bumi 90%, batubara 100 % dan gas alam 100%. Dengan adanya sistem ini diharapkan mampu memberikan peringatan dini dan pendukung keputusan bagi pemerintah atau pihak instansi terkait dalam memberikan penangan atau solusi terhadap masalah krisis energi. World energy crisis also occurred in Indonesia. Energy reserves in Indonesia, especially fossil fuels (petroleum, coal, and natural gas) are increasingly shrinking. The availability of fossil energy will also be on the wane because of an increase in energy consumption per capita. To predict the energy crisis in Indonesia, this paper proposes the development of sukamoto fuzzy inference systems for classification energy crisis based on parameters the amount of production, energy consumption and energy demand driven factors, namely GDP and population. Outcomes of this system is the classification based on these parameters, i.e., a safe condition, alert and crisis. The experimental results show the system produce levels of accuracy at 90% petroleum, natural gas 100% and CoA, 100%. This system are expected to provide an early warning and decision support for the government or the relevant agencies in giving the handlers or the solution to the problem of energy crisis. 


2021 ◽  
Author(s):  
Manasi Dash ◽  
Abinash Mishra ◽  
Mahendra Kumar Mohanty

Bioenergy including biofuels from lignocellulosic biomass has immense potential to meet growing energy demand of the ever-growing world population. Bioenergy will help to mitigate the environmental problems arising due to burning of fossil fuels. Rice is the staple food for more than half of the world population and is grown in more than 100 countries. Rice straw is rich in lignocellulose and several technologies are available for efficient extraction and conversion of cellulose to ethanol. Thus, the surplus rice straw can be utilised to produce biofuel, so as to replace conventional fossil fuel sources. But it is reported that the present-day rice varieties showing high lignocellulosic straw biomass have low grain yield potential. Hence, it is important to re orient the breeding strategies for developing dual purpose rice varieties that are bioenergy efficient without compromising grain yield.


2021 ◽  
Vol 13 (12) ◽  
pp. 6751
Author(s):  
Muhammad U. Khan ◽  
Muhammad Ahmad ◽  
Muhammad Sultan ◽  
Ihsanullah Sohoo ◽  
Prakash C. Ghimire ◽  
...  

Pakistan is facing a severe energy crisis due to its heavy dependency on the import of costly fossil fuels, which ultimately leads to expansive electricity generation, a low power supply, and interruptive load shedding. In this regard, the utilization of available renewable energy resources within the country for production of electricity can lessen this energy crisis. Livestock waste/manure is considered the most renewable and abundant material for biogas generation. Pakistan is primarily an agricultural country, and livestock is widely kept by the farming community, in order to meet their needs. According to the 2016–2018 data on the livestock population, poultry held the largest share at 45.8%, followed by buffaloes (20.6%), cattle (12.7%), goats (10.8%), sheep (8.4%), asses (1.3%), camels (0.25%), horses (0.1%), and mules (0.05%). Different animals produce different amounts of manure, based upon their size, weight, age, feed, and type. The most manure is produced by cattle (10–20 kg/day), while poultry produce the least (0.08–0.1 kg/day). Large quantities of livestock manure are produced from each province of Pakistan; Punjab province was the highest contributor (51%) of livestock manure in 2018. The potential livestock manure production in Pakistan was 417.3 million tons (Mt) in 2018, from which 26,871.35 million m3 of biogas could be generated—with a production potential of 492.6 petajoules (PJ) of heat energy and 5521.5 MW of electricity. Due to its favorable conditions for biodigester technologies, and through the appropriate development of anaerobic digestion, the currently prevailing energy crises in Pakistan could be eliminated.


2016 ◽  
Vol 36 (1) ◽  
pp. 196-212
Author(s):  
MF Akorede ◽  
O Ibrahim ◽  
SA Amuda ◽  
AO Otuoze ◽  
BJ Olufeagba

Over 80% of the current Nigerian primary energy consumption is met by petroleum. This overdependence on fossil fuels derived from petroleum for local consumption requirements should be a serious source of concern for the country in two ways – depletion of the resources and negative impact on the environment. This paper presents a critical review of the available renewable energy resources in Nigeria, namely; biomass, hydropower, solar and wind energy. It examines the current energy situation in the country and equally discusses the various energy policy documents developed by the government. Using the scenario-based International Atomic Energy Agency models, the projected energy demand and supply structure of the country through 2030 are presented and analysed. Overall, this study shows that Nigeria will overcome her present energy crisis if she explores the abundant renewable energy resources in the country.  The data presented in this paper is a crucial eye-opener for relevant government agencies towards developing these energy resources in tackling the present energy crisis in Nigeria.  http://dx.doi.org/10.4314/njt.v36i1.25


2018 ◽  
Vol 38 ◽  
pp. 02006
Author(s):  
Yu-Ming Sun ◽  
Xiao-Mei Huang ◽  
Yin-Hu Kang

In China, livestock manure emission has resulted in severe pollution to the environment and it is an efficient spreading agent of diseases. For this reason, the biogas has gotten a rapid development in the past few decades. As a kind of renewable and clean energy, many studies have indicated the prospect of biogas to replace fossil fuels in the future. However, the methane industrial production process is unstable due to various factors. Therefore, it is necessary to enhance the biogas fermentation efficiency. In this paper, the influences of the raw materials and the total solids (TS) concentration on biogas production characteristics are studied, where the utilization of raw materials can be reflected by the biogas production rate in the results. The results showed the anaerobic fermentation cycle is prolonged and biogas yield increases, but the utilization decreases with TS increases.


Sign in / Sign up

Export Citation Format

Share Document