scholarly journals Agonistic and antagonistic properties of progesterone metabolites at the human mineralocorticoid receptor

2002 ◽  
pp. 789-799 ◽  
Author(s):  
M Quinkler ◽  
B Meyer ◽  
C Bumke-Vogt ◽  
C Grossmann ◽  
U Gruber ◽  
...  

OBJECTIVE: Progesterone binds to the human mineralocorticoid receptor (hMR) with nearly the same affinity as do aldosterone and cortisol, but confers only low agonistic activity. It is still unclear how aldosterone can act as a mineralocorticoid in situations with high progesterone concentrations, e.g. pregnancy. One mechanism could be conversion of progesterone to inactive compounds in hMR target tissues. DESIGN: We analyzed the agonist and antagonist activities of 16 progesterone metabolites by their binding characteristics for hMR as well as functional studies assessing transactivation. METHODS: We studied binding affinity using hMR expressed in a T7-coupled rabbit reticulocyte lysate system. We used co-transfection of an hMR expression vector together with a luciferase reporter gene in CV-1 cells to investigate agonistic and antagonistic properties. RESULTS: Progesterone and 11beta-OH-progesterone (11beta-OH-P) showed a slightly higher binding affinity than cortisol, deoxycorticosterone and aldosterone. 20alpha-dihydro(DH)-P, 5alpha-DH-P and 17alpha-OH-P had a 3- to 10-fold lower binding potency. All other progesterone metabolites showed a weak affinity for hMR. 20alpha-DH-P exhibited the strongest agonistic potency among the metabolites tested, reaching 11.5% of aldosterone transactivation. The agonistic activity of 11beta-OH-P, 11alpha-OH-P and 17alpha-OH-P was 9, 5.1 and 4.1% respectively. At a concentration of 100 nmol/l, progesterone, 17alpha-OH-P and 20alpha-DH-P inhibit nearly 75, 40 and 35% of the transactivation by aldosterone respectively. All other progesterone metabolites tested demonstrate weaker affinity, and agonistic and antagonistic potency. CONCLUSIONS: The binding affinity for hMR and the agonistic and antagonistic activity diminish with increasing reduction of the progesterone molecule at C20, C17 and at ring A. We assume that progesterone metabolism to these compounds is a possible protective mechanism for hMR. 17alpha-OH-P is a strong hMR antagonist and could exacerbate mineralocorticoid deficiency in patients with congenital adrenal hyperplasia.

Blood ◽  
1998 ◽  
Vol 92 (9) ◽  
pp. 3286-3293
Author(s):  
Erika T. Brown ◽  
Gerald M. Fuller

The promoter region of the Bβ fibrinogen gene containing the polymorphic site (G−455-A) shows an increase in fibrinogen levels for individuals containing an adenine rather than a guanine. Two methods were used to explore the possible functional role of this region. Electrophoretic mobility shift assays (EMSAs) were performed using specific DNA probes containing base sequences pertinent to the allelic site. Specific DNA binding proteins were detected and their binding characteristics were determined. Secondly, we placed DNA fragments containing different −455 nucleotide substitutions of the Bβ promoter upstream of a luciferase reporter gene and transfected them into HepG2 cells to determine their effect on transactivation. An adenine at position −455 resulted in greater luciferase activity than when a guanine was present. UV cross-linking bound protein to the DNA demonstrated a 47-kD protein binding preferentially to the site when a guanine rather than an adenine was present at −455. We hypothesize that a transactivation protein complex associates with the site, but its association is stronger when guanine is present, thereby slowing downstream Bβ gene transcription. These data provide the first molecular evidence that accounts for the increase in fibrinogen in individuals carrying this allele.© 1998 by The American Society of Hematology.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Maniselvan Kuppusamy ◽  
Elise Gomez-Sanchez ◽  
Celso Gomez-Sanchez

Introduction: Hypertension and diabetes are independent risk factors for cardiovascular disease, however why they frequently occur together is not clear. Inappropriate mineralocorticoid receptor (MR) activation is associated with diabetes and the metabolic syndrome, as well as hypertension and abnormal cardiovascular remodeling. MR antagonists are effective in reducing hypertension and delaying the onset of renal and cardiovascular complications in diabetes despite circulating aldosterone levels that are within normal limits. Glucose concentrations increase O-glycosylation of many proteins, thus alter their function. Hence, we hypothesized that increased O-GlcNac modification of the MR by high glucose enhances MR activation. Methods: MR transcriptional activity was studied in a mouse cortical collecting duct (M1) cell line stably transfected with a cDNA construct including the MR and one with a hormone-response element driving a Gaussia luciferase reporter gene. The cells were incubated for 48 h with low (5mM) or high (25mM) glucose media with and without Thiamet-G (TMG), an O-GlcNAcase inhibitor to inhibit deglycosylation, and 6-diazo-5-oxonorleucine (DON), a glucosamine-fructose-6-phosphate amidotransferase inhibitor (GFAT) to reduce O-GlcNAc levels. Additionally, MR and GR antagonists were used to identify receptor specificity under low and high glucose conditions. O-GlcNac-modified MR was co-immunoprecipitated with an MR antibody and detected with an O-GlcNAc antibody. Results: 1. Co-immunoprecipitation assays showed that high glucose and TMG increased O-GlcNac-MR by 3-fold. 2. Compared to low glucose, treatment with high glucose and with TMG increased the transcriptional activity of MR by 300%. 3. DON decreased MR-reporter activity by 75%. 4. High glucose alone had no significant basal effect but significantly increased MR activation by aldosterone. 5. MR reporter activity was increased similarly by aldosterone and corticosterone. Conclusion: High glucose increased glycosylation of the MR, augmenting its transcriptional activity. Enhancement of MR activation by hyperglycemia may explain how MRs play a significant role in the cardiorenal pathology in Diabetes.


2004 ◽  
Vol 89 (3) ◽  
pp. 1068-1075 ◽  
Author(s):  
Mark D. Lewis ◽  
Martin Horan ◽  
David S. Millar ◽  
Vicky Newsway ◽  
Tammy E. Easter ◽  
...  

Abstract The pituitary-expressed GH1 gene was screened for mutation in a group of 74 children with familial short stature. Two novel mutations were identified: an Ile179Met substitution and a −360A→G promoter variant. The Ile179Met variant was shown to exhibit a similar degree of resistance to proteolysis as wild-type GH, indicating that the introduction of Met does not cause significant misfolding. Secretion of Ile179Met GH from rat pituitary cells was also similar to that of wild type. Although receptor binding studies failed to show any difference in binding characteristics, molecular modeling studies suggested that the Ile179Met substitution might nevertheless perturb interactions between GH and the GH receptor loop containing the hotspot residue Trp169, thereby affecting signal transduction. The ability of the Ile179Met variant to activate a signal transducer and activator of transcription (STAT) 5-responsive luciferase reporter gene and induce phosphorylation of STAT 5 and ERK was therefore studied. In contrast to its ability to activate STAT 5 normally, activation of ERK by the Ile179Met variant was reduced to half that observed with wild type. Although differential effects on the activation of distinct signaling pathways by a mutant receptor agonist are unprecedented, these findings also suggest that the ERK pathway could play a role in mediating the action of GH.


Blood ◽  
1998 ◽  
Vol 92 (9) ◽  
pp. 3286-3293 ◽  
Author(s):  
Erika T. Brown ◽  
Gerald M. Fuller

Abstract The promoter region of the Bβ fibrinogen gene containing the polymorphic site (G−455-A) shows an increase in fibrinogen levels for individuals containing an adenine rather than a guanine. Two methods were used to explore the possible functional role of this region. Electrophoretic mobility shift assays (EMSAs) were performed using specific DNA probes containing base sequences pertinent to the allelic site. Specific DNA binding proteins were detected and their binding characteristics were determined. Secondly, we placed DNA fragments containing different −455 nucleotide substitutions of the Bβ promoter upstream of a luciferase reporter gene and transfected them into HepG2 cells to determine their effect on transactivation. An adenine at position −455 resulted in greater luciferase activity than when a guanine was present. UV cross-linking bound protein to the DNA demonstrated a 47-kD protein binding preferentially to the site when a guanine rather than an adenine was present at −455. We hypothesize that a transactivation protein complex associates with the site, but its association is stronger when guanine is present, thereby slowing downstream Bβ gene transcription. These data provide the first molecular evidence that accounts for the increase in fibrinogen in individuals carrying this allele. © 1998 by The American Society of Hematology.


Planta Medica ◽  
2009 ◽  
Vol 75 (09) ◽  
Author(s):  
S Vogl ◽  
P Picker ◽  
N Fakhrudin ◽  
A Atanasov ◽  
E Heiß ◽  
...  

Author(s):  
Zheng Dong ◽  
Qing-Hua Xu ◽  
Yuan-Bin Zhu ◽  
Yong-Feng Wang ◽  
Jie Xiong ◽  
...  

Aims : The present study explored the clinical significance of microRNA-22 (miR-22) expression in lung squamous cell carcinoma and to explore the targeting relationship with vascular endothelial growth factor receptor 3 (VEGFR3). Methods: A total of 49 patients with lung squamous cell carcinoma who underwent surgical treatment was selected. The expression of miR-22 was detected by fluorescence quantitative real-time PCR (qPCR), the expression of VEGFR3 was detected by Western blotting assays, and D240 labeled microlymphatic vessels density (MLVD) was detected immunohistochemistry (IHC). Lung squamous cell carcinoma cell line SK-MES-1 was selected and the targeting relationship between miR-22 and VEGFR3 was analyzed by double luciferase reporter gene assay. Western blotting assays were used to detect the expression of vascular endothelial growth factor-D (VEGF-D) and D240 in the blank control group, empty vector transfection group, miR-22 transfection group, miR-22 and VEGFR3 co-transfection group. Results: The expression range of miR-22 in lung squamous cell carcinoma was 0.8-3.5. The expression of miR-22 in lung squamous cell carcinoma was significantly different by tumor maximum diameter, lymph node metastasis, vascular invasion and TNM stage. The expression of miR-22 was linked to survival time. There was a negative correlation between miR-22 and VEGFR3, miR-22 and MLVD. Double luciferase reporter gene assays showed that miR-22 reduced the luciferase activity of pGL3-VEGFR3-WT transfected cells. Compared with the control group, the expression of VEGF-D and D2-40 in the miR-22 transfection group was significantly decreased. However, VEGF-D and D240 in the miR-22 and VEGFR3 cotransfection group reversed the changes. Conclusion: We assumed that the abnormal expression of miR-22 in lung squamous cell carcinoma may be involved in the development and progression of lung squamous cell carcinoma. MiR-22 negatively regulated the target gene VEGFR3 to mediate lymphangiogenesis. The expression of miR-22 may also be linked to the prognosis of the disease.


2020 ◽  
Vol 20 (6) ◽  
pp. 715-723
Author(s):  
Natarajan Nandakumar ◽  
Pushparathinam Gopinath ◽  
Jacob Gopas ◽  
Kannoth M. Muraleedharan

Background: The authors investigated the NF-κB inhibitory role of three Benzisothiazolone (BIT) derivatives (1, 2 and 3) in Hodgkin’s Lymphoma cells (L428) which constitutively express activated NF-κB. All three compounds showed dose-dependent NF-κB inhibition (78.3, 70.7 and 34.6%) in the luciferase reporter gene assay and were found cytotoxic at IC50 values of 3.3μg/ml, 4.35μg/ml and 13.8μg/ml, respectively by the XTT assay. BIT 1and BIT 2 (but not BIT 3) suppressed both NF-κB subunits p50 and p65 in cytoplasmic and nuclear extracts in a concentration-dependent manner. Furthermore, BIT 1 showed a moderate synergistic effect with the standard chemotherapy drugs etoposide and doxorubicin, whereas BIT 2 and 3 showed a moderate additive effect to antagonistic effect. Cisplatin exhibited an antagonist effect on all the compounds tested under various concentrations, except in the case of 1.56μg/ml of BIT 3 with 0.156μg/ml of cisplatin. The compounds also inhibited the migration of adherent human lung adenocarcinoma cells (A549) in vitro. We conclude that especially BIT 1 and BIT 2 have in vitro anti-inflammatory and anti-cancer activities, which can be further investigated for future potential therapeutic use. Methods: Inspired by the electrophilic sulfur in Nuphar alkaloids, monomeric and dimeric benzisothiazolones were synthesized from dithiodibenzoic acid and their NF-κB inhibitory role was explored. NF-κB inhibition and cytotoxicity of the synthesized derivatives were studied using luciferase reporter gene assay and XTTassay. Immunocytochemistry studies were performed using L428 cells. Cell migration assay was conducted using the A549 cell line. L428 cells were used to conduct combination studies and the results were plotted using CompuSyn software. Results: Benzisothiazolone derivatives exhibited cytotoxicity in Hodgkin’s Lymphoma cells through NF-κB inhibition. Potent compounds showed suppression of both NF-κB subunits p50 and p65 in a concentrationdependent manner, both in cytoplasmic and nuclear extracts. Combination studies suggest that benzisothiazolone derivatives possess a synergistic effect with etoposide and doxorubicin. Furthermore, the compounds also inhibited the migration of A549 cells. Conclusion: Benzisothiazolones bearing one or two electrophilic sulfur atoms as part of the heterocyclic framework exhibited cytotoxicity in Hodgkin’s Lymphoma cells through NF-κB inhibition. In addition, these derivatives also exhibited a synergistic effect with etoposide and doxorubicin along with the ability to inhibit the migration of A549 cells. Our study suggests that BIT-based new chemical entities could lead to potential anticancer agents.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110093
Author(s):  
Mingxin Liu ◽  
Hong Wu ◽  
Yiqiang Liu ◽  
Yan Tan ◽  
Songtao Wang ◽  
...  

MiR-326 functions as an antioncogene in the several types of cancer. However, the underling mechanisms through which miRNA-326 regulates the anti-carcinogenesis of lung adenocarcinoma have remained elusive. The aim of this study was to explore the role and regulatory mechanism of miR-326 in cell proliferation, invasion, migration and apoptosis in lung adenocarcinoma. Quantitative real-time PCR (qRT-PCR) was used to detect the expression pattern of miR-326 in human bronchial epithelial cells (HBES-2B), 4 kinds of lung adenocarcinoma cell lines (H23, H1975, H2228, H2085) and 20 lung adenocarcinoma tissues. Then, H23 cells were infected with miR-326 mimics, miR-326 inhibitors and si-ZEB1 to build up-regulated miR-326 cell lines, down-regulated ZEB1(zinc-finger-enhancer binding protein 1)cell lines, simultaneous down-regulated ZEB1 and miR-326 cell lines. Moreover, CCK-8 assay, transwell invasion assay, wound healing assay and flow cytometry assay were employed to examine the effects of miR-326 and ZEB1 on the proliferation, invasion, migration and apoptosis abilities of H23 cells. Western blot was performed to explore the effects of miR-326 and ZEB1 on the expression of invasion and migration related proteins N-cadherin, E-cadherin, MMP7, MMP13, SLUG and apoptotic proteins PARP, BAX. On the mechanism, a dual-luciferase reporter gene was used to measure the target relationship between miR-326 and ZEB1. MiR-326 expression was significantly downregulated in lung adenocarcinoma tissues and cells. Overexpression of miR-326 significantly inhibited the malignant behaviors of H23 cells. Mechanically, luciferase reporter assay showed that ZEB1 was a direct target of miR-326. MiR-326 mimic downregulated the expression of ZEB1. Furthermore, knocking down ZEB1 strongly inhibited the proliferation, invasion and migration of H23 cells but promoted apoptosis. MiR-326 could target ZEB1 to inhibit the proliferation, invasion and migration of lung adenocarcinoma cells and promote apoptosis, which is a potential therapeutic target for lung adenocarcinoma.


2020 ◽  
Vol 15 (1) ◽  
pp. 159-172
Author(s):  
Guoning Su ◽  
Zhibing Yan ◽  
Min Deng

AbstractSevoflurane was frequently used as a volatile anesthetic in cancer surgery. However, the potential mechanism of sevoflurane on lung cancer remains largely unclear. In this study, lung cancer cell lines (H446 and H1975) were treated by various concentrations of sevoflurane. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assessment and colony formation assay were performed to detect the cell viability and proliferation, separately. Also, transwell assay or flow cytometry assay was applied as well to evaluate the invasive ability or apoptosis in lung cancer cells, respectively. Western blot assay was employed to detect the protein levels of β-catenin and Wnt5a. Moreover, quantitative real-time polymerase chain reaction (qRT-PCR) was used to examine the expression level of prostate cancer-associated transcript 6 (PCAT6) and miR-326 in lung cancer tissues and cells. The target interaction between miR-326 and PCAT6 or Wnt5a was predicted by bioinformatics analysis and verified by the dual-luciferase reporter gene assay. Sevoflurane inhibited the abilities on viability, proliferation, invasion, and activation of Wnt/β-catenin signaling, but promoted apoptosis of H446 and H1975 cells in a dose-dependent manner. The expression of PCAT6 was increased in lung cancer tissues and cells, except for that of miR-326. Besides, sevoflurane could lead to expressed limitation of PCAT6 or improvement of miR-326. This process presented a stepwise manner. Up-regulation of PCAT6 restored the suppression of sevoflurane on abilities of proliferation, invasion, rather than apoptosis, and re-activated the Wnt5a/β-catenin signaling in cells. Moreover, the putative binding sites between miR-326 and PCTA6 or Wnt5a were predicted by starBase v2.0 software online. PCAT6 suppressing effects on cells could be reversed by pre-treatment with miR-326 vector. The promotion of Wnt5a inverted effects led from miR-326 or sevoflurane. Our study indicated that sevoflurane inhibited the proliferation, and invasion, but enhanced the apoptosis in lung cancer cells by regulating the lncRNA PCAT6/miR-326/Wnt5a/β-catenin axis.


Sign in / Sign up

Export Citation Format

Share Document