scholarly journals Expression of CA-125 by progestational bovine endometrium: prospective regulation and function

Reproduction ◽  
2003 ◽  
pp. 615-620 ◽  
Author(s):  
AC McDonnel ◽  
EA Van Kirk ◽  
KJ Austin ◽  
TR Hansen ◽  
EL Belden ◽  
...  

Cancer antigen 125 (CA-125) is expressed by malignant human ovarian surface epithelial cells and derivatives of the Mullerian duct system. This study explored the expression, regulation, and function of CA-125 in the bovine uterus. CA-125 was localized by immunohistochemistry to the apical surfaces of epithelial cells lining the endometrium and proximal glands of the late luteal phase and early pregnancy; antigen was not detected during oestrus or the postpartum period. Production of CA-125 by bovine endometrial cells in vitro was upregulated by progesterone and interferon-tau. Immunopurified CA-125 from uterine flushes of dioestrous or pregnant cows was similar in biochemical composition (as determined by gel electrophoresis and amino acid content) to the human antigen isolated from incubation medium conditioned by the ovarian cancer cell line OVCAR-3. Bovine CA-125 inhibited complement-induced lysis of antibody-sensitized sheep erythrocytes. It is suggested that endometrial CA-125 exerts a progestational role in part by protecting maternal and embryonic cells from immune targeting and lysis.

Reproduction ◽  
2015 ◽  
Vol 150 (3) ◽  
pp. 217-225 ◽  
Author(s):  
Koumei Shirasuna ◽  
Haruka Matsumoto ◽  
Shuichi Matsuyama ◽  
Koji Kimura ◽  
Heinrich Bollwein ◽  
...  

When pregnancy is established, interferon tau (IFNT), a well-known pregnancy recognition signal in ruminants, is secreted by embryonic trophoblast cells and acts within the uterus to prepare for pregnancy. IFNT acts as an endocrine factor on the corpus luteum (CL) to induce refractory ability against the luteolytic action of PGF2α. Hypothesising that IFNT may influence not only the uterine environment but also the CL in cows via local or peripheral circulation, we investigated qualitative changes in the CL of pregnant cows during the maternal recognition period (day 16) and the CL of non-pregnant cows. The CL of pregnant animals had a higher number of neutrophils, and the expression of interleukin 8 (IL8) mRNA and its protein was higher as well as compared with the CL of non-pregnant animals. Although IFNT did not affect progesterone (P4) secretion and neutrophil migration directly, it stimulated IL8 mRNA expression on luteal cells (LCs), influencing the neutrophils, resulting in the increased migration of IFNT-activated neutrophils. Moreover, both IFNT-activated neutrophils and IL8 increased P4 secretion from LCs in vitro. Our novel finding was the increase in neutrophils and IL8 within the CL of pregnant cows, suggesting the involvement of IFNT function within the CL toward establishment of pregnancy in cows. The present results suggest that IFNT upregulates neutrophil numbers and function via IL8 on LCs in the CL of early pregnant cows and that both neutrophils and IL8, stimulated by IFNT, are associated with an increase in P4 concentrations during the maternal recognition period in cows.


2016 ◽  
Vol 28 (4) ◽  
pp. 459 ◽  
Author(s):  
A. Vitorino Carvalho ◽  
C. Eozenou ◽  
G. D. Healey ◽  
N. Forde ◽  
P. Reinaud ◽  
...  

Signal transducer and activator of transcription (STAT) proteins are critical for the regulation of numerous biological processes. In cattle, microarray analyses identified STAT1 as a differentially expressed gene in the endometrium during the peri-implantation period. To gain new insights about STAT1 during the oestrous cycle and early pregnancy, we investigated STAT1 transcript and protein expression, as well as its biological activity in bovine tissue and cells of endometrial origin. Pregnancy increased STAT1 expression on Day 16, and protein and phosphorylation levels on Day 20. In cyclic and pregnant females, STAT1 was located in endometrial cells but not in the luminal epithelium at Day 20 of pregnancy. The expression of STAT1 during the oestrous cycle was not affected by progesterone supplementation. In vivo and in vitro, interferon-tau (IFNT) stimulated STAT1 mRNA expression, protein tyrosine phosphorylation and nuclear translocation. Using chromatin immunoprecipitation in IFNT-stimulated endometrial cells, we demonstrated an increase of STAT1 binding on interferon regulatory factor 1 (IRF1), cytokine-inducible SH2-containing protein (CISH), suppressor of cytokine signaling 1 and 3 (SOCS1, SOCS3) gene promoters consistent with the induction of their transcripts. Our data provide novel molecular insights into the biological functions of STAT1 in the various cells composing the endometrium during maternal pregnancy recognition and implantation.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Shaoyuan Xu ◽  
Jie Li ◽  
Xiaoyan Chen ◽  
Beiyu Liu

Objective. Whether changes in vascular endothelial growth factor (VEGF) and annexin IV during implantation are regulated through the LH/hCG-R needs further research. To investigate the mechanism of hCG on the expression of annexin IV and VEGF in human endometrial cells. Methods. Endometrial cells were isolated and identified from human specimens. The proportion of glandular and epithelial cells was analyzed. Annexin IV and VEGF were analyzed by qRT-PCR (mRNA), western blot (proteins), and immunohistochemistry (proteins). Protein location was identified by immunohistochemistry. The cells were cultured with hCG, hCG/PD98059 (a MAPK inhibitor), or no treatment (control). Results. The proportions between the glandular epithelial cells and stromal cells at inoculation and when adding hCG were 25.8 ± 0.2% and 27.8 ± 0.04%, respectively ( P > 0.05 ). LH/hCG-R, annexin IV, and VEGF were found in the cytoplasm of endometrial cells. After 2, 6, 12, and 24 h of hCG treatment, compared with 1 h, VEGF mRNA was increased by 1.25-fold, 3.19-fold, 4.21-fold, and 4.86-fold and annexin IV by 2.23-fold, 3.37-fold, 5.14-fold, and 5.02-fold. Compared with the control group, annexin IV mRNA and protein were increased in the hCG and hCG/PD98059 groups (mRNA/protein: 1.99-fold/1.80-fold and 2.33-fold/1.93-fold, P < 0.05 ). Compared with the control group, VEGF mRNA and protein were increased in the hCG group (mRNA/protein: 2.30-fold/1.86-fold), but not in the hCG/PD98059 group. Conclusion. hCG could upregulate the mRNA and protein expression of annexin IV and VEGF. The upregulation of annexin IV by hCG could not be inhibited by PD98059, but the upregulation of VEGF by hCG could.


Blood ◽  
1999 ◽  
Vol 93 (3) ◽  
pp. 974-990
Author(s):  
Sergio R. Dalmau ◽  
Claudia S. Freitas ◽  
Wilson Savino

A 250-cGy whole-body γ-radiation dose was used to induce thymus regression in mice, and to study the expression and function of extracellular matrix (ECM) receptors in distinct thymocyte subsets emerging during repopulation of the organ. The onset of regeneration was detected from day 2 to 3 postirradiation (P-Ir), when a remarkable increase in the absolute counts of CD3−CD25hiCD44+ and CD3−CD25in/hiCD44−cells occurred. Enhanced expression of L-selectin, 4, and 5 integrin chains (L-selhi 4hi5hi) was also exhibited by these cells. This pattern of expression was maintained until the CD4+CD8+ (DP) young stage was achieved. Afterward, there was a general downregulation of these ECM receptors in DP as well as in CD4+ or CD8+ single positive (SP) thymocytes (L-selin 4in5in). In some recently generated SP cells, 4 expression was downregulated before the 5 chain, and L-selectin was upregulated in half of more mature cells. The expression of the 6 integrin chain was downregulated only in maturing CD4+cells. Importantly, the increased expression of L-selectin and 4 and 5 chains in thymocytes was strongly correlated with their adhesiveness to thymic epithelial cells (TEC) in vitro. Blocking experiments with monoclonal antibody or peptides showed the following: (1) that the LDV rather than the REDV cell attachment motif in the IIIC segment of fibronectin is targeted by the 4 integrin during thymocyte/TEC adhesion; (2) that the RGD motif of the 120-kD fragment of fibronectin, a target for 5 integrin, has a secondary role in this adhesion; and (3) that the YIGSR cell attachment motif of the β1 chain of laminin/merosin recognized by a nonintegrin receptor is not used for thymocyte adherence. In conclusion, our results show that an upregulated set of receptors endows CD25+ precursors and cells up to the young DP stage with a high capability of interacting with thymic ECM components.


2014 ◽  
Vol 220 (3) ◽  
pp. 263-276 ◽  
Author(s):  
Anna Z Szóstek ◽  
António M Galvão ◽  
Graça M Ferreira-Dias ◽  
Dariusz J Skarzynski

This study aimed to evaluate the influence of ovarian steroids on equine endometrial epithelial and stromal cells, specifically i) prostaglandin (PG) production in a time-dependent manner, ii) specific PG synthases mRNA transcription and protein expression, and iii) cell proliferation. After passage I, cells were exposed to vehicle, oxytocin (OT, positive control, 10−7M), progesterone (P4, 10−7M), 17β estradiol (E2, 10−9M), or P4+E2for 12, 24, 48, or 72 h. Following treatment, PG concentration was determined using the direct enzyme immunoassay (EIA) method. Alterations inPGsynthases mRNA transcriptions,PGsynthases protein expression, and cell proliferation in response to the treatments were determined after 24 h using real-time PCR, western blot, or 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide respectively. After 24 h, E2and P4+E2increased PGE2and PGF2αsecretion as well as specific prostaglandin-endoperoxide synthase-2 (PTGS2), PGE2synthases (PGES), and PGF2αsynthases (PGFS) expression in the epithelial cells (P<0.05). Additionally, E2and P4+E2increased PTGS2 expression in stromal cells after 24 h (P<0.05). In stromal cells, P4+E2increased PGE2production as well as PGES expression after 24 h (P<0.05). Both E2and P4+E2increased PGF2αproduction by stromal cells after 24 h (P<0.05). Ovarian steroids affected proliferation of stromal and epithelial cells during the 24-h incubation period (P<0.05). We provide evidence that ovarian steroids affect PG production in equine endometrial cells, upregulating PTGS2, PGES, and PGFS expression. Ovarian steroid-stimulated PG production could be an important mechanism occurring in the equine endometrium that is involved in the regulation of the estrous cycle and early pregnancy.


1992 ◽  
Vol 4 (3) ◽  
pp. 275 ◽  
Author(s):  
LA Salamonsen ◽  
RA Cherny ◽  
JK Findlay

Normal endometrial function is a result of regulation by the combination of ovarian steroids and local agents arising from within the embryo-maternal unit. We have used in vitro techniques to examine the role of steroid hormones and ovine trophoblast interferon on endometrial function in the ewe. Immunolocalization of oestrogen receptors in endometrial tissue demonstrated marked changes throughout the cycle and in early pregnancy with maximal concentrations during the follicular and very early luteal phases. Protein secretion from highly purified cultured ovine stromal and epithelial endometrial cells, and the direction of secretion from polarized epithelial cells, has been examined by incorporation of [35S]methionine and by one- and two-dimensional gel electrophoresis. Protein synthesis is greater in stromal than in epithelial cells and more protein is secreted apically than basally from epithelial cells. A number of common and some different proteins are secreted by the two cell types. One secreted protein is matrix metalloproteinase-3 (stromelysin) which degrades components of basement membranes. Ovine trophoblast interferon attenuates the production of prostaglandins from ovine endometrial cells but its action is not by an effect on localization or concentration of the enzyme prostaglandin synthase or on expression of the gene for prostaglandin synthase. Such studies in vitro contribute to our understanding of how the endometrium is prepared for implantation.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Yaping He ◽  
Zhaogui Sun ◽  
Yan Shi ◽  
Yahong Jiang ◽  
Zhefu Jia ◽  
...  

Immune tolerance at the fetomaternal interface must be established during the processes of implantation and pregnancy. Monoclonal nonspecific suppressor factor beta (MNSFβ) is a secreted protein that possesses antigen-nonspecific immune-suppressive function. It was previously reported that intrauterine immunoneutralization of MNSFβ significantly inhibited embryo implantation in mice. In the present study, MNSFβ protein expression was up- or downregulated by overexpression or RNA interference, respectively, in HCC-94 cells and the culture supernatants used to determine effects of MNSFβ on the secretion of IL-4 and TNFα from mouse lymphocytes as detected by ELISA. A coculture model of mouse embryos and endometrial stromal cells was also utilized to determine the effects of a specific anti-MNSFβ antibody on hatching and growth of embryos in vitro. The results show that MNSFβ induced secretion of IL-4 and inhibited secretion of TNFα from mouse lymphocytes. Following immunoneutralization of MNSFβ protein in the HCC-94 supernatant, the stimulatory effect of MNSFβ on IL-4 secretion from mouse lymphocytes was reduced, while the inhibitory effect on secretion of TNFα was abrogated. Expression of MNSFβ was detected in both embryonic and endometrial stromal cells, and its immunoneutralization inhibited the hatching and spreading of embryos in an in vitro coculture model. These results indicated that MNSFβ may play critical roles during the peri-implantation process by regulating cytokine secretion of lymphocytes and by mediating the crosstalk between embryonic cells and endometrial stromal cells.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 325-326
Author(s):  
Cecilia Constantino Rocha ◽  
Felipe Alves Correa Carvalho da Silva ◽  
Thiago Martins ◽  
Marcela Marrero ◽  
John Driver ◽  
...  

Abstract Cultured primary endometrial cells are used extensively to study uterine function in cattle. However, most protocols harvest endometrial cells from slaughtered animals at estimated stages of the estrous cycle. The goal of this study was to establish and validate an in vivo, minimally invasive, and estrous cycle stage-specific method to obtain endometrial cells for culture. In Experiment 1, the uterine body of Bos indicus-influenced cows was sampled using a cytology brush (cytobrush) 4 days post estrus (D4; n = 13). Brushes were transported in medium (DMEM/F12, 3% Penicillin/Streptomycin and 2% of Fungizone) to the laboratory at ambient temperature. Cells were cultured in medium containing 10% FBS at 5% of CO2 (38°C). Confluent cells (~7 days of culture) were sub-cultured for two subsequent passages. Pools (n = 4) of cells from 2–3 animals, were frozen, thawed, and re-plated (passage 3). The relative transcript abundance of PPIA, ACTB, KRT18, VIM, OXTR, PGR, ESR1 and IFNAR1 were analyzed by qPCR and compared among fresh cells and cells from each passage. Abundance of KRT18 and VIM transcripts was similar across passages, while PGR, ESR1, OXTR and IFNAR1 transcripts decreased by 90, 96, 84, and 82 %; respectively in cultured compared to fresh cells (P &lt; 0.05). In Experiment 2, passage 3 cells were cultured for 24 hours with 0 or 1ng/mL of recombinant bovine interferon-tau (rbIFNT; n = 3 replicates/treatment). The relative expression of a classical interferon stimulated gene, ISG15, was evaluated by qPCR. Expression of ISG15 was 6-fold greater (P &lt; 0.05) in the rbIFNT treated cells compared to controls. In conclusion, the culture of endometrial cells collected by cytobrush is feasible, generates a monolayer enriched in epithelial cells and may be used as a model for physiological studies involving IFNT signaling. Further experiments to ascertain the physiological relevance of this model are underway.


Sign in / Sign up

Export Citation Format

Share Document