scholarly journals Population Connectivity Predicts Vulnerability to White-Nose Syndrome in the Chilean Myotis (Myotis chiloensis) - A Genomics Approach

2020 ◽  
Vol 10 (6) ◽  
pp. 2117-2126
Author(s):  
Thomas M. Lilley ◽  
Tiina Sävilammi ◽  
Gonzalo Ossa ◽  
Anna S. Blomberg ◽  
Anti Vasemägi ◽  
...  

Despite its peculiar distribution, the biology of the southernmost bat species in the world, the Chilean myotis (Myotis chiloensis), has garnered little attention so far. The species has a north-south distribution of c. 2800 km, mostly on the eastern side of the Andes mountain range. Use of extended torpor occurs in the southernmost portion of the range, putting the species at risk of bat white-nose syndrome, a fungal disease responsible for massive population declines in North American bats. Here, we examined how geographic distance and topology would be reflected in the population structure of M. chiloensis along the majority of its range using a double digestion RAD-seq method. We sampled 66 individuals across the species range and discovered pronounced isolation-by-distance. Furthermore, and surprisingly, we found higher degrees of heterozygosity in the southernmost populations compared to the north. A coalescence analysis revealed that our populations may still not have reached secondary contact after the Last Glacial Maximum. As for the potential spread of pathogens, such as the fungus causing WNS, connectivity among populations was noticeably low, especially between the southern hibernatory populations in the Magallanes and Tierra del Fuego, and more northerly populations. This suggests the probability of geographic spread of the disease from the north through bat-to-bat contact to susceptible populations is low. The study presents a rare case of defined population structure in a bat species and warrants further research on the underlying factors contributing to this. See the graphical abstract here. https://doi.org/10.25387/g3.12173385

2020 ◽  
Author(s):  
Thomas M. Lilley ◽  
Tiina M. Sävilammi TM ◽  
Gonzalo Ossa ◽  
Anna S Blomberg ◽  
Anti Vasemägi ◽  
...  

ABSTRACTDespite its peculiar distribution, the biology of the southernmost bat species in the world, the Chilean myotis (Myotis chiloensis), has garnered little attention so far. The species has a north-south distribution of c. 2800 km, mostly on the eastern side of the Andes mountain range. Use of extended torpor occurs in the southernmost portion of the range, putting the species at risk of bat white-nose syndrome (WNS), a fungal disease responsible for massive population declines in North American bats. Here, we examined how geographic distance and topology would be reflected in the population structure of M. chiloensis along the majority of its range using a double digestion RAD-tag method. We sampled 66 individuals across the species range and discovered pronounced isolation-by-distance. Furthermore, and surprisingly, we found higher degrees of heterozygosity in the southernmost populations compared to the north. A coalescence analysis revealed that our populations may still not have reached secondary contact after the Last Glacial Maximum. As for the potential spread of pathogens, such as the fungus causing WNS, connectivity among populations was noticeably low, especially between the southern hibernatory populations in the Magallanes and Tierra del Fuego, and more northerly populations. This suggests the probability of geographic spread of the disease from the north through bat-to-bat contact to susceptible populations is low. The study presents a rare case of defined population structure in a bat species and warrants further research on the underlying factors contributing to this.


Genes ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 544 ◽  
Author(s):  
Claudia Mischler ◽  
Andrew Veale ◽  
Tracey van Stijn ◽  
Rudiger Brauning ◽  
John McEwan ◽  
...  

Black-billed gulls (Larus bulleri) are endemic to New Zealand and are suspected to be undergoing substantial population declines. They primarily breed on open gravel beds in braided rivers of the South Island—a habitat that is diminishing and becoming increasingly modified. Although management of this species is increasing, little has been published on their movements and demographics. In this study, both mitochondrial DNA (mtDNA) control region domain I and nuclear single nucleotide polymorphisms (SNPs) were examined to help understand the connectivity and population structure of black-billed gulls across the country and to help inform management decisions. Mitochondrial DNA showed no population structure, with high haplotype and low nucleotide diversity, and analyses highlighted mitochondrial introgression with the closely related red-billed gulls (Larus novaehollandiae scopulinus). Nuclear DNA analyses, however, identified two groups, with Rotorua birds in the North Island being distinct from the rest of New Zealand, and isolation-by-distance evident across the South Island populations. Gene flow primarily occurs between nearby colonies with a stepwise movement across the landscape. The importance from a genetic perspective of the more isolated North Island birds (1.6% of total population) needs to be further evaluated. From our results, we infer that the South Island black-billed gull management should focus on maintaining several populations within each region rather than focusing on single specific colonies or river catchments. Future study is needed to investigate the genetic structure of populations at the northern limit of the species’ range, and identify the mechanisms behind, and extent of, the hybridisation between red-billed and black-billed gulls.


2017 ◽  
Vol 95 (12) ◽  
pp. 901-907 ◽  
Author(s):  
Benoit Talbot ◽  
Maarten J. Vonhof ◽  
Hugh G. Broders ◽  
M. Brock Fenton ◽  
Nusha Keyghobadi

Subdivided populations can be described by different models of population structure that reflect population organization, dynamics, and connectivity. We used genetic data to investigate population structure in two geographically sympatric, congeneric species of generalist ectoparasites of warm-blooded animals. We characterized the spatial genetic structure of the eastern bat bug (Cimex adjunctus Barber, 1939), an understudied and fairly abundant species, using microsatellite markers at a spatial scale representing contemporary dispersal of the species. We found seven genetic clusters, global [Formula: see text] of 0.2, 33% of genetic variation among sites, and nonsignificant isolation-by-distance. We compared these results with the common bed bug (Cimex lectularius L., 1758), a closely related but conversely well-known species, in the same geographic area. We found stronger genetic structuring in C. lectularius than in C. adjunctus, with 11 genetic clusters, [Formula: see text] of 0.7, 57% of genetic variation among sites, and significant but weak isolation-by-distance (R2 = 0.09). These results suggest that while both species can be described as having classic metapopulation structure, C. adjunctus leans more towards a patchy population and C. lectularius leans more towards a nonequilibrium metapopulation. The difference in population structure between these species may be attributable to differences in movement potential and extinction–colonization dynamics.


2020 ◽  
Author(s):  
William S. Pearman ◽  
Sarah J. Wells ◽  
Olin K. Silander ◽  
Nikki E. Freed ◽  
James Dale

AbstractMarine organisms generally exhibit one of two developmental modes: biphasic, with distinct adult and larval morphology, and direct development, in which larvae resemble adults. Developmental mode is thought to significantly influence dispersal, with direct developers expected to have much lower dispersal potential. However, in contrast to our relatively good understanding of dispersal and population connectivity for biphasic species, comparatively little is known about direct developers. In this study, we use a panel of 8,020 SNPs to investigate population structure and gene flow for a direct developing species, the New Zealand endemic marine isopod Isocladus armatus. On a small spatial scale (20 kms), gene flow between locations is extremely high and suggests an island model of migration. However, over larger spatial scales (600km), populations exhibit a clear pattern of isolation-by-distance. Because our sampling range is intersected by two well-known biogeographic barriers (the East Cape and the Cook Strait), our study provides an opportunity to understand how such barriers influence dispersal in direct developers. Our results indicate that I. armatus exhibits significant migration across these barriers, and suggests that ocean currents associated with these locations do not present a barrier to dispersal. Interestingly, we do find evidence of a north-south population genetic break occurring between Māhia and Wellington, two locations where there are no obvious biogeographic barriers between them. We conclude that developmental life history largely predicts dispersal in intertidal marine isopods. However, localised biogeographic processes can disrupt this expectation.


Author(s):  
Paul R Berg ◽  
Per E Jorde ◽  
Kevin A Glover ◽  
Geir Dahle ◽  
John B Taggart ◽  
...  

Abstract The advent of novel genetic methods has made it possible to investigate population structure and connectivity in mobile marine fish species: knowledge of which is essential to ensure a sustainable fishery. Haddock (Melanogrammus aeglefinus) is a highly exploited marine teleost distributed along the coast and continental shelf on both sides of the North Atlantic Ocean. However, little is known about its population structure. Here, we present the first study using single-nucleotide polymorphism (SNP) markers to assess the genetic population structure of haddock at multiple geographic scales, from the trans-Atlantic to the local (fjord) level. Genotyping 138 SNP loci in 1329 individuals from 19 locations across the North Atlantic revealed three main genetic clusters, consisting of a Northwest Atlantic cluster, a Northeast Arctic cluster, and a Northeast Atlantic cluster. We also observed a genetically distinct fjord population and a pattern of isolation by distance in the Northeast Atlantic. Our results contrast with the current management regime for this species in the Northeast Atlantic, as we found structure within some management areas. The study adds to the growing recognition of population structuring in marine organisms in general, and fishes in particular, and is of clear relevance for the management of haddock in the Northeast Atlantic.


2021 ◽  
Vol 12 ◽  
Author(s):  
Amal Boukteb ◽  
Shota Sakaguchi ◽  
Yasunori Ichihashi ◽  
Mohamed Kharrat ◽  
Atsushi J. Nagano ◽  
...  

Orobanche foetida Poiret is a holoparasitic plant that lacks chlorophyll and totally depending on its host for its growth. Orobanche foetida parasitizes host plant roots and extract nutrient and water via a haustorium. Although O. foetida distributes in the Mediterranean region as a wild plant parasite, it parasitizes faba bean causing serious damages which may reach 90% yield losses in Tunisia. Analysis of genetic diversity of the parasite is important to better understand its evolution and spread, remained largely unknown. In this work, we present the first study on genetic diversity and population structure using the robust technique Restriction-site-Associated DNA sequencing (RADseq) for Orobanche spp. We collected 244 samples of O. foetida from 18 faba bean fields in the north of Tunisia including 17 populations from the north-west and one population form the north-east. To overcome the difficulty of SNP discovery in O. foetida genome as a non-model and tetraploid plant, we utilized three different informatics pipelines, namely UNEAK, pyRAD and Stacks. This study showed that genetic differentiation occurred in the Tunisian O. foetida emphasizing the isolation by distance effect. However, no strong population clustering was detected in this work basing on the three data sets and clustering methods used. The present study shed the light on the current distribution and the genetic variation situation of the fetid broomrape in Tunisia, highlighting the importance of understanding the evolution of this parasite and its genetic background. This will aid in developing efficient strategies to control this parasite and its expansion in Tunisia and worldwide.


2020 ◽  
Author(s):  
Oliver Kersten ◽  
Bastiaan Star ◽  
Deborah M. Leigh ◽  
Tycho Anker-Nilssen ◽  
Hallvard Strøm ◽  
...  

AbstractThe factors underlying gene flow and genomic population structure in vagile seabirds are notoriously difficult to understand due to their complex ecology with diverse dispersal barriers and extensive periods at sea. Yet, such understanding is vital for conservation management of seabirds that are globally declining at alarming rates. Here, we elucidate the population structure of the Atlantic puffin (Fratercula arctica) by assembling its reference genome and analyzing genome-wide resequencing data of 72 individuals from 12 colonies. We identify four large, genetically distinct clusters, observe isolation-by-distance between colonies within these clusters, and obtain evidence for a secondary contact zone. These observations disagree with the current taxonomy, and show that a complex set of contemporary biotic factors impede gene flow over different spatial scales. Our results highlight the power of whole genome data to reveal unexpected population structure in vagile marine seabirds and its value for seabird taxonomy, evolution and conservation.


2020 ◽  
Author(s):  
Yacine Ben Chehida ◽  
Roisin Loughnane ◽  
Julie Thumloup ◽  
Kristin Kaschner ◽  
Cristina Garilao ◽  
...  

AbstractUnderstanding a species response to past environmental changes can help forecast how they will cope with ongoing climate changes. Harbor porpoises are widely distributed in the North Atlantic and were deeply impacted by the Pleistocene changes with the split of three sub-species. Despite major impacts of fisheries on natural populations, little is known about population connectivity and dispersal, how they reacted to the Pleistocene changes and how they will evolve in the future. Here, we used phylogenetics, population genetics, and predictive habitat modelling to investigate population structure and phylogeographic history of the North Atlantic porpoises. A total of 925 porpoises were characterized at 10 microsatellite loci and one-quarter of the mitogenome (mtDNA). A highly divergent mtDNA lineage was uncovered in one porpoise off Western Greenland, suggesting that a cryptic group may occur and could belong to a recently discovered mesopelagic ecotype off Greenland. Aside from it and the southern sub-species, spatial genetic variation showed that porpoises from both sides of the North Atlantic form a continuous system belonging to the same subspecies (Phocoena phocoena phoceona). Yet, we identified important departures from random mating and restricted intergenerational dispersal forming a highly significant isolation-by-distance (IBD) at both mtDNA and nuclear markers. A ten times stronger IBD at mtDNA compared to nuclear loci supported previous evidence of female philopatry. Together with the lack of spatial trends in genetic diversity, this IBD suggests that migration-drift equilibrium has been reached, erasing any genetic signal of a leading-edge effect that accompanied the predicted recolonization of the northern habitats freed from Pleistocene ice. These results illuminate the processes shaping porpoise population structure and provide a framework for designing conservation strategies and forecasting future population evolution.


2008 ◽  
Vol 65 (9) ◽  
pp. 2026-2042 ◽  
Author(s):  
Jeffrey B. Olsen ◽  
Blair G. Flannery ◽  
Terry D. Beacham ◽  
Jeffrey F. Bromaghin ◽  
Penelope A. Crane ◽  
...  

We used 20 microsatellite loci to compare genetic diversity and patterns of isolation-by-distance among three groups of chum salmon ( Oncorhynchus keta ) from two physically distinct watersheds in western Alaska, USA. The results were consistent with the hypothesis that gene flow decreases as the complexity of the hydrographic system increases. Specifically, higher gene flow was inferred among 11 populations from a nonhierarchical collection of short coastal rivers in Norton Sound compared with 29 populations from a complex hierarchical network of inland tributaries of the Yukon River. Within the Yukon River, inferred gene flow was highest among 15 summer-run populations that spawn in the lower drainage, compared with 14 fall-run populations that spawn in the upper drainage. The results suggest that the complexity of the hydrographic system may influence population connectivity and hence the level of genetic diversity of western Alaska chum salmon. Finally, evidence of isolation-by-time, when controlling for geographic distance, supported the hypothesis that genetic divergence in Yukon River chum salmon is influenced by seasonal run timing. However, evidence of isolation-by-distance, when controlling for season run timing, indicated the populations are not sufficiently isolated, spatially or temporally, to prevent gene flow. Dispersal among summer- and fall-run populations may play a role in maintaining genetic diversity.


2021 ◽  
Vol 7 (3) ◽  
pp. 182
Author(s):  
Adrian Forsythe ◽  
Karen J. Vanderwolf ◽  
Jianping Xu

White-Nose Syndrome is an ongoing fungal epizootic caused by epidermal infections of the fungus, Pseudogymnoascus destructans (P. destructans), affecting hibernating bat species in North America. Emerging early in 2006 in New York State, infections of P. destructans have spread to 38 US States and seven Canadian Provinces. Since then, clonal isolates of P. destructans have accumulated genotypic and phenotypic variations in North America. Using microsatellite and single nucleotide polymorphism markers, we investigated the population structure and genetic relationships among P. destructans isolates from diverse regions in North America to understand its pattern of spread, and to test hypotheses about factors that contribute to transmission. We found limited support for genetic isolation of P. destructans populations by geographic distance, and instead identified evidence for gene flow among geographic regions. Interestingly, allelic association tests revealed evidence for recombination in the North American P. destructans population. Our landscape genetic analyses revealed that the population structure of P. destructans in North America was significantly influenced by anthropogenic impacts on the landscape. Our results have important implications for understanding the mechanism(s) of P. destructans spread.


Sign in / Sign up

Export Citation Format

Share Document