scholarly journals Effect of extractives on the physicochemical properties of biomass pellets: Comparison of pellets from extracted and non-extracted sycamore leaves

BioResources ◽  
2019 ◽  
Vol 15 (1) ◽  
pp. 544-556
Author(s):  
Jianbiao Liu ◽  
Weidong Cheng ◽  
Xuya Jiang ◽  
Muhammad Usman Khan ◽  
Qingfa Zhang ◽  
...  

Physicochemical properties of biomass pellets were compared following their preparation from extracted and non-extracted sycamore leaves. The goal was to achieve high-quality biomass pellets. Batches of pellets were prepared at different moisture contents and pressure. The properties, including pellet density, diametric compressive strength, and combustion performance, were analyzed. Pellets produced from extracted leaves had higher pellet density (between 1125 and 1250 kg·m-3) compared to those made from non-extracted leaves. In addition, data of the combustion experiment showed more weight loss in extracted leaves’ pellets and a higher burning rate (9.54%·min-1) than that of non-extracted leaves’ pellets (8.47%·min-1). Also, the pellets made from extracted leaves could be ignited and burned easily compared to non-extracted leaves. However, the diametric compressive strength was not always higher in extracted leaves’ pellets compared to non-extracted. In general, it was concluded that extraction could increase the pellet density and improve combustion performance but did not fit the purpose to increase the diametric compressive strength. The analysis and conclusions can provide a reference for the production of high-quality biomass pellets.

2020 ◽  
Author(s):  
Changtian Gong ◽  
Shuo Fang ◽  
Kezhou Xia ◽  
Jingteng Chen ◽  
Liangyu Guo ◽  
...  

Abstract Incorporating bioactive substances into synthetic bioceramic scaffolds is challenging. In this work, oxygen-carboxymethyl chitosan (O-CMC), a natural biopolymer that is nontoxic, biodegradable and biocompatible, was introduced into magnesium potassium phosphate cement (K-struvite) to enhance its mechanical properties and cytocompatibility. This study aimed to develop O-CMC/magnesium potassium phosphate composite bone cement (OMPC), thereby combining the optimum bioactivity of O-CMC with the extraordinary self-setting properties and mechanical intensity of the K-struvite. Our results indicated that O-CMC incorporation increased the compressive strength and setting time of K-struvite and decreased its porosity and pH value. Furthermore, OMPC scaffolds remarkably improved the proliferation, adhesion and osteogenesis related differentiation of MC3T3-E1 cells. Therefore, O-CMC introduced suitable physicochemical properties to K-struvite and enhanced its cytocompatibility for use in bone regeneration.


1998 ◽  
Vol 1998 ◽  
pp. 202-202
Author(s):  
R J Mansbridge ◽  
J S Blake

High yielding cows require high quality diets to sustain milk yields and to minimise weight loss, metabolic disorders and fertility problems. Traditionally, these diets have contained fishmeal and soyabean meal, both widely regarded as good sources of high quality, digestible undegraded protein (DUP). However, there is increasing concern over the sustainability of world fish stocks and the BSE scare has increased public awareness to the extent that feeding animal protein to herbivores may become unacceptable in me future. This in turn has driven up the price of high quality imported vegetable proteins, such as soyabean meal. The aim of this study was to investigate whether fishmeal and soyabean meal could be replaced in the diet of high yielding cows, with protein sources grown in the UKIn a 12 week randomised block design experiment, 60 muciparous Holstein cows, on average 28 days calved at the start of the study, were fed total mixed rations based on grass silage and one of five protein mixtures. These were either 0.5 kg DM fishmeal + 0.7 kg DM soya + 2.5 kg DM rapeseed (PC), 1.3 kg DM soyabean + 2.3 kg DM rapeseed (PI), 3.8 kg DM lupins + 2.3 kg DM heat treated rapeseed (P2), 3.6 kg DM linseed + 1.4 kg DM rapeseed (P3) or 5.8 kg DM rapeseed (P4). Each diet was formulated to supply sufficient energy and metabolisable protein for maintenance + 43 litres and 0.75kg/d weight loss and to contain similiar levels of DUP (AFRC, 1993).


Author(s):  
Rahmi Karolina ◽  
◽  
M.A.P Handana ◽  
Rahmat Jatmikanto ◽  
◽  
...  

A The current environmental problem is regarding to CO2 gas emissions from cement production and the presence of hazardous material waste (B3) from steel production. One solution for that problem is by applying slag cement as a substitute for type I portland cement in concrete mix to create a high quality concrete that is environmentally friendly with a high durability and initial strength. This research aimed to compare a high quality concrete made from slag cement and a high quality concrete with conventional mixture. The slag cement used was obtained from PT. Indocement Indonesia. It is coupled with the use of Master Ease 3029 superplasticizer. The results showed that from the samples of concrete of 3, 7, 14, 28, 56 and 90 days of age, the maximum absorption value of normal concrete occurs at the age of 90 days with acid water curing of 1.57%. While the maximum absorption value of slag cement concrete occurs at the same age with acid water curing of 1.50%. The curing of normal concrete with water at 56 days of age has the largest compressive strength from all. It is also found that slag cement concrete has higher maximum compressive strength than that of normal concrete with acid water curing at 56 days of curing.


2020 ◽  
Vol 20 (01) ◽  
pp. 61-68
Author(s):  
Siska Apriwelni ◽  
Nugraha Bintang Wirawan

(ID) Penelitian ini membahas pengaruh kuat tekan beton mutu tinggi dengan memanfaatkan limbah fly ash dan limbah kaca. Tujuan dari penelitian ini untuk mengetahui kuat tekan beton pada masing-masing variasi, mengetahui persentase campuran beton untuk menghasilkan kuat tekan maksimum, dan mengetahui apakah fly ash dan serbuk kaca efektif digunakan secara bersamaan sebagai bahan campuran beton. Komposisi fly ash terdiri dari 5 variasi yaitu persentase 0%, 5%, 10%, 15%, dan 20%. Sedangkan untuk komposisi serbuk kaca terdiri dari 2 variasi yaitu persentase 5% dan 10%. Jumlah benda uji 30 buah silinder berukuran diameter 15 cm dan tinggi 30 cm dengan 3 benda uji untuk setiap variasi. Perencanaan campuran beton menggunakan SNI 03-2834-2000 yang dimodifikasi. Pengujian kuat tekan diuji pada umur beton 28 hari. Beton dengan fly ash 0% dan serbuk kaca 10% memiliki kuat tekan paling tinggi dibandingkan dengan beton dengan tambahan fly ash, yaitu 46,77%. Selain itu, dapat disimpulkan bahwa semakin bertambahnya jumlah persentase serbuk kaca yang digunakan menunjukkan bahwa kuat tekan beton semakin bertambah juga. Penambahan fly ash pada campuran beton mempengaruhi kuat tekan beton yang dihasilkan. Pada variasi fly ash 0% memiliki kuat tekan tertinggi baik pada saat campuran serbuk kaca 5%dan 10%. Variasi fly ash 15% adalah kondisi optimum campuran beton dengan kuat tekan beton yaitu 43,31 Mpa. Kedua limbah ini dapat dikombinasikan dan dimanfaatkan dengan baik dan digunakan dalam pembuatan beton mutu tinggi. (EN) This study discusses the effect of high quality concrete by utilizing fly ash and glass waste. The purpose of this study is to determine the compressive strength of concrete in each variation, to determine the contribution of concrete to produce compressive strength, and to find out that fly ash and glass powder are effectively used in full as a concrete admixture. Fly ash composition consists of 5 variations, namely the percentage of 0%, 5%, 10%, 15%, and 20%. While for the composition of glass powder consists of 2 variations, namely the percentage of 5% and 10%. The number of specimens is 30 cylinders with a diameter of 15 cm and a height of 30 cm with 3 specimens for each variation. Concrete mixture planning using SNI 03-2834-2000 was developed. Compressive strength testing on concrete age 28 days. Concrete with 0% fly ash and 10% glass powder have the highest compressive strength compared to concrete with additional fly ash, which is 46.77%. In addition, it can increase the amount of glass powder addition that is used to show the concrete compressive strength is increasing as well. The addition of fly ash in the concrete mixture has an effect on the compressive strength of the concrete produced. In the variation of 0% fly ash has the highest compressive strength when the glass powder mixture of 5% and 10%. The 15% fly ash variation is the optimal concrete mixture with compressive strength of 43.31 MPa. These two wastes can be combined and utilized properly and are used in making high quality concrete.  


2021 ◽  
Vol 10 (4) ◽  
pp. 737-746
Author(s):  
Ukrit Samaksaman ◽  
Kanit Manatura

The co-combustion characteristics and kinetics of torrefied sugarcane bagasse (TB), lignite (L), and their blended samples were experimentally investigated using thermogravimetric analysis (TGA) and derivative thermogravimetry (DTG)based on the Coats-Redfern method for kinetic estimation.Their physicochemical properties were also investigated.Raw bagasse was thermally treated in a laboratory-scale torrefactor at 275 °C with a torrefaction time of 60 min under an inert nitrogen environment.Then, the torrefied bagasse was blended with Thai lignite as a co-fuel at ratios of 50:50 (TB50L50), 70;30(TB70L30), and 90:10 (TB90L10), respectively. Torrefaction improved the fuel properties and heating value of the raw bagasse as well as reducing the O/C and H/C ratios.In addition, the blending of torrefied bagasse with lignite improved the combustion behavior.The TGA and DTG results indicated that the ignition and burnout temperatures stepped downwards with different increasing ratios of torrefied bagasse.The co-combustion behavior at the maximum burning rate showed that the burnout temperatures of TB50L50, TB70L30, and TB90L10 were 532, 529, and 528 °C, respectively, indicating a slight decrease with an increasing torrefied bagasse blending ratio.These results were sufficient to provide comprehensive guidelines in terms of the design and operation of the combustion system for adding torrefied bagasse into the co-firing process.


Cerâmica ◽  
2019 ◽  
Vol 65 (374) ◽  
pp. 261-266 ◽  
Author(s):  
L. P. Silva ◽  
M. D. P. Ribeiro ◽  
E. S. Trichês ◽  
M. Motisuke

Abstract Calcium phosphate cements (CPCs) are potential materials for repairing bone defects, mainly due to their excellent biocompatibility and osteoconductivity. Nevertheless, their low mechanical properties limit their usage in clinical applications. The gelatin addition may improve the mechanical and biological properties of CPCs, but their solubility in water may increase the porosity of the cement during degradation. Thus, the aim of this work was to investigate the influence of gelatin on the setting time, compressive strength and degradation rate of a brushite cement. CPCs were prepared with the addition of 0, 5, 10 and 20 wt% of gelatin powder in the solid phase of the cement. The results indicated that the setting time increased with gelatin. Furthermore, cement with 20 wt% of gelatin had an initial compressive strength of 14.1±1.8 MPa while cement without gelatin had 4.5±1.2 MPa. The weight loss, morphology and compressive strength were evaluated after degradation in Ringer’s solution. According to the weight loss data, gelatin was eliminated of samples during degradation. It was concluded that the presence of gelatin improved CPCs mechanical properties; however, as degradation in Ringer’s solution evolved, cement compressive strength decreased due to gelatin dissolution and, consequently, an increase in sample porosity.


2020 ◽  
Vol 1009 ◽  
pp. 31-36
Author(s):  
Kanokwan Kanyalert ◽  
Prinya Chindaprasirt ◽  
Duangkanok Tanangteerapong

This work aims to reveal the effects of zeolite on properties of fly ash based geopolymer under high temperature at 300 °C, 600 °C and 900 °C. The specimens were prepared by alkali activation of fly ash, which was partially replaced by two different types of zeolite at 10%, 20% and 30% by weight. The specimens were analyzed for the maximum compressive strength, weight loss percentage, XRD and SEM. The results highlighted that the percentage of weight loss increased with the ratio of zeolite replacement. The compressive strength of geopolymer with synthetic zeolite and natural zeolite at 7, 28, 60 days were similar. The high-temperature exposure resulted in the reduction in compressive strength in all proportions. At the same temperature, compressive strength of all specimens were not significantly different.


2006 ◽  
Vol 309-311 ◽  
pp. 861-864 ◽  
Author(s):  
Byung Hyun Lee ◽  
Min Chul Kim ◽  
Kyoung Nam Kim ◽  
Kwang Mahn Kim ◽  
Seong Ho Choi ◽  
...  

In preliminary ageing test, the cement using only calcium phosphate glass as power phase cracked with 1 day in simulated body fluid because of high dissolution rate of the cement. We added 30 wt% of either β-TCP or HA to 70 wt% calcium phosphate glass as powder phase to control the dissolution rate of the cement and performed in vitro ageing test in simulated body fluid by dynamic protocol as well as static protocol to confirm the possibility of controlling. Adding either β-TCP or HA to the cement increases the setting time and decreases the compressive strength. In dynamic assay, the pH of extract is maintained over 7. However, pH decreased to around 5 in static assay. Therefore, weight loss by static protocol continuously increased for 14 days, while weight loss by dynamic protocol almost saturated. In XRD patterns of ageing cements, CaO peaks appeared. CaO peak was maximized most lately in dynamic assay of the cement adding HA and within 7 days, the cement adding HA showed higher weight loss. It is indicated that CaO formed in surface of the cement hinder the dissolution of the cement. In addition, compressive strength increased when the CaO peak was maximized.


Sign in / Sign up

Export Citation Format

Share Document