scholarly journals The effect of heat treatment on the moisture absorption characteristics of Cu-impregnated Masson’s pine wood

BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 8459-8471
Author(s):  
Lamei Li ◽  
Guijun Xie ◽  
Wanju Li ◽  
Yixin Li ◽  
Xingwei Li

The accumulation of water inside wood creates a favorable environment not only for molds, but also for wood-decaying fungi and insects. Therefore, the ability to limit water adsorption and retention is key to the longevity and performance of wood. In this study, the effect of heat-treatment and Cu nanoparticle (CuNP) impregnation on surface contact angle, specific surface area, and hygroscopicity of Masson’s pine wood was examined. Heat-treatment caused thermal degradation of hydroxyl-rich biopolymers, leading to an increase in hydrophobicity; while the resulting breakdown and blockage of the interior cell cavity network caused a decrease in effective surface area. In turn, the hygroscopicity of the heat-treated wood was considerably lower than the untreated wood. Analysis of water adsorption isotherms enabled the differentiation between bound water and free water, where the latter was a prerequisite for mold growth. The research showed that the amount of free water was reduced by both impregnation with CuNP and heat-treatment, but the previously observed antimicrobial activity was shown to rely on the presence of CuNPs as opposed to the reduced free water content. This study presented a detailed methodology for the preparation and analysis of heat-treated, CuNP-impregnated wood, and provided further insight into the mechanism of antimicrobial action of treated woods.

2018 ◽  
Vol 9 (1) ◽  
pp. 78 ◽  
Author(s):  
Yulei Gao ◽  
Kang Xu ◽  
Hui Peng ◽  
Jiali Jiang ◽  
Rongjun Zhao ◽  
...  

Knowledge of the dynamic changes in the water absorption process of heat-treated wood is important for providing a scientific basis for the reasonable application of heat-treated wood, especially for outdoor applications. Nuclear magnetic resonance (NMR) techniques provide detailed information about the moisture components and moisture transport processes in wood, which are not available with other methods. In this work, water absorption of untreated and heat treated Chinese fir (Cunninghamia lanceolata [Lamb.] Hook.) heartwood was investigated using various NMR methods. The heat treatment temperatures were varied between 160 °C and 220 °C. According to the spin-spin relaxation time (T2), there were two components of water in the samples heat-treated at 160 °C and 180 °C as well as the untreated sample, while three components of water were found in the samples heat-treated at 200 °C and 220 °C, and the mass of each component was calculated by the integral peak areas of the T2 curve. The amount of bound water and free water in heat-treated samples were less compared to the untreated ones, and the water absorption decreased correspondingly, due to the increasing heat-treated temperature. The results obtained by one dimensional frequency coding indicated that the heat treatment made wood difficult to be accessed by moisture. Besides, NMR images revealed that the free water absorption in latewood was faster than in earlywood, but earlywood could absorb more water than latewood.


2014 ◽  
Vol 2 ◽  
pp. 345-352 ◽  
Author(s):  
Cristina Marinela Olarescu ◽  
Mihaela Campean

Heat treatment is renowned as the most environmentally friendly process of dimensional stabilization that can be applied to wood, in order to make it suitable for outdoor uses. It also darkens wood color and improves wood durability. The intensity of heat treatment can be appreciated by means of two parameters: the color change occured in wood due to the high temperature, and the mass loss, which is a measure of the degree of thermal degradation. In order to find a mathematical correlation between these two parameters, an experimental study was conducted with four European wood species, which were heat-treated at 180°C and 200ºC, for 1-3 hours, under atmosheric pressure.The paper presents the results concerning the color changes and mass losses recorded for the heat-treated wood samples compared to untreated wood.  For all four species, the dependency between the color change and the mass loss was found to be best described by a logarithmic regression equation with R2 of 0.93 to 0.99 for the soft species (spruce, pine and lime), and R2 of 0.77 for beech. The results of this study envisage to simplify the assessment procedure of the heat treatment efficiency, by only measuring the color – a feature that is both convenient and cost-effective. 


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5322
Author(s):  
Idalina Domingos ◽  
Umit Ayata ◽  
José Ferreira ◽  
Luisa Cruz-Lopes ◽  
Ali Sen ◽  
...  

Chemical composition influences the calorific power of wood, mainly due to the calorific power of structural compounds and extractives. Heat treatment changes the chemical composition of treated wood. This work studies the relationship between chemical composition and calorific power improvement by heat treatment. Samples were heat-treated by the ThermoWood process ® for 1 h and 2 h. High heating value (HHV) and chemical composition; lignin, cellulose, hemicelluloses and extractives in dichloromethane, ethanol, and water were determined. The HHV of untreated wood ranged between 18.54–19.92 MJ/kg and increased with heat treatment for all the tested species. A positive linear correlation was found between HHV and Klason lignin (R2 = 0.60). A negative trend was observed for holocellulose, cellulose, and hemicelluloses content against HHV, but with low determination coefficients for linear regression. The best adjust for polysaccharides was found for hemicelluloses content. A positive correlation could be found for dichloromethane extractives (R2 = 0.04). The same was obtained in relation to ethanol extractives with R2 = 0.20. For water and total extractives, no clear positive or negative trends could be achieved. The results showed that the HHV of wood increased with heat treatment and that this increase was mainly due to the increase in lignin content.


Holzforschung ◽  
2003 ◽  
Vol 57 (3) ◽  
pp. 301-307 ◽  
Author(s):  
M. Pétrissans ◽  
P. Gérardin ◽  
I. El bakali ◽  
M. Serraj

Summary The aim of this work was to study the wettability and chemical composition of heat-treated wood. Heat treatment was performed at 240°C under inert atmosphere on four European wood species (pine, spruce, beech and poplar). Contact angle measurements before and after treatment indicated a significant increase in wood hydrophobicity. Advancing contact angles of a water drop were in all cases systematically higher for heat-treated than for untreated wood. Chemical modifications of wood after heat treatment were investigated using FTIR and 13C NMR analysis. FTIR spectra indicated little structural change which could be attributed either to carbon-carbon double bond formation or to adsorbed water. NMR spectra also revealed little chemical change except for the degree of cellulose crystallinity which was considerably higher in heat-treated wood and could explain the higher contact angles.


Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 466 ◽  
Author(s):  
Hamid R. Taghiyari ◽  
Siavash Bayani ◽  
Holger Militz ◽  
Antonios N. Papadopoulos

The scope of the present work was to study the effects of heat treatment (at different mild temperatures) on the physicomechanical properties of pine wood, and to find out if impregnation with nanosilver may have any potential influence on the impact of heat treatment. Impregnation of wood with a 400-ppm silver nanosuspension was carried out under an initial vacuum pressure of 0.07 MPa, followed by a pressure of 0.25 MPa for thirty minutes, before heat treatment. Heat treatment was carried out under hot air at three relatively mild temperatures, 145, 165, and 185 °C. Results showed improvement of some properties in heat-treated wood at 145 °C. This was indicative of the improving impact caused by hornification and irreversible hydrogen bonding in the course of water movements due to heat treatment; significant fluctuations in the intensities of FTIR spectra bands at 1750–1500 cm−1 were corroborating evidence of chemical alterations in hemicellulose polymer. The high mass loss at temperature 185 °C, and the extreme thermal degradation thereof, overcame the improving effects of hornification and formation of irreversible hydrogen bonds, consequently mechanical properties decreased significantly. Interaction of different elements involved made it hard to predict properties in specimens modified at 165 °C. Impregnation of specimens with nanosilver suspension resulted in significant increase of mass loss in specimens heat-treated at 185 °C, and significant fluctuations in properties of specimens heat-treated at 145 °C.


2018 ◽  
Vol 32 (10) ◽  
pp. 1408-1426 ◽  
Author(s):  
Ruth A Lafia-Araga ◽  
Aziz Hassan ◽  
R Yahya ◽  
N Abd Rahman ◽  
Fauzani Md Salleh

The hygroscopic nature of wood limits the use of wood thermoplastic composites (WTC) in outdoor industrial and domestic applications. To reduce this tendency, red balau saw dust was heat treated at 180 and 200°C for 1 h and compounded with Low Density Poly(ethylene) (LDPE) into 20 and 37 wt% and then molded into test specimens by injection molding. Samples were immersed in distilled water at room temperature for 4 months. Heat-treated wood composites showed remarkable water resistance relative to untreated ones. Wood composites made from wood treated at 180 and 200°C exhibited almost similar water absorption pattern. Reduced water absorption of heat-treated wood composites relative to untreated ones indicates that heat treatment has resulted in a degree of modification of the wood. Most of the composites displayed the Fickian mode of water absorption with n values close to 0.5. Also, the diffusion coefficient reduced with wood content in untreated wood composites due to interaction of water with the polar groups in wood through hydrogen bonding. Untreated wood composites exhibited poorer mechanical properties with water immersion as a result of degradation due to moisture. The mechanical properties of the heat-treated wood composites were not adversely affected with water absorption. Therefore, heat treatment can reduce the proneness to water absorption in WTCs and alleviate the detrimental effects on mechanical properties.


2004 ◽  
Vol 155 (12) ◽  
pp. 548-554 ◽  
Author(s):  
Fritz Bächle ◽  
Peter Niemz ◽  
Markus Heeb

Spruce wood that was heat treated in rape oil (laboratory scale) and in an autoclave with a nitrogen atmosphere (industrial scale), respectively, was tested according to EN 113 for its resistance to basidiomycetes (4 brown and 1 white rot). In addition,resistance to blue-stain fungi was tested according to EN 152 and pH-values were measured in an outdoor ageing process. Influenced by the thermal treatment a clear decrease of mass loss induced by brown rot can be seen. There is an obvious influence of the kind of fungi and the level of treatment. Inoculated with Trametes versicolor (simultaneous white rot) a higher mass loss can be seen in the heat-treated specimens than in the untreated specimens. The big differences in the results between the fungi show that the type of fungi plays a role in the degree of influence. It would therefore seem that tests using only one fungus are insufficient. Similar results were achieved by testing previously weathered samples. The tendencies are not always similar. Blue-stain was occasionally detected near the surface of heat-treated wood. The pH-value of wood treated in an autoclave is clearly lower than that of untreated wood. The colour of the heat-treated wood is not UV stable. However, the colour achieved by the oil-heat-treatment is more stable than that achieved by a treatment in an autoclave.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5574-5585
Author(s):  
Intan Fajar Suri ◽  
Jong Ho Kim ◽  
Byantara Darsan Purusatama ◽  
Go Un Yang ◽  
Denni Prasetia ◽  
...  

Color changes were tested and compared for heat-treated Paulownia tomentosa and Pinus koraiensis wood treated with hot oil or hot air for further utilization of these species. Hot oil and hot air treatments were conducted at 180, 200, and 220 °C for 1, 2, and 3 h. Heat-treated wood color changes were determined using the CIE-Lab color system. Weight changes of the wood before and after heat treatment were also determined. The weight of the oil heat-treated wood increased considerably but it decreased in air heat-treated wood. The oil heat-treated samples showed a greater decrease in lightness (L*) than air heat-treated samples. A significant change in L* was observed in Paulownia tomentosa. The red/green chromaticity (a*) of both wood samples increased at 180 and 200 °C and slightly decreased at 220 °C. The yellow/blue chromaticity (b*) in both wood samples increased at 180 °C, but it rapidly decreased with increasing treatment durations at 200 and 220 °C. The overall color change (ΔE*) in both heat treatments increased with increasing temperature, being higher in Paulownia tomentosa than in Pinus koraiensis. In conclusion, oil heat treatment reduced treatment duration and was a more effective method than air heat treatment in improving wood color.


Holzforschung ◽  
2007 ◽  
Vol 61 (2) ◽  
pp. 115-119 ◽  
Author(s):  
Frances L. Walsh ◽  
Sujit Banerjee

Abstract A new technique for measuring the monolayer water content of fiber is presented. Tritiated water is added to a pulp/water suspension, whereupon the tritium partitions between the bulk water and the pulp. In the pulp phase the tritium can exchange with free water, bound water, and with hydroxyl and other protons present in the pulp matrix. The free water in the pulp is then removed by displacement with acetone. The tritium remaining in the pulp is mostly associated with tightly bound water, with a small fraction being tied up with the exchangeable hydrogen in pulp. The procedure provides a value of 10% for the tightly bound water content of hardwood or softwood fiber, either bleached or unbleached. If this water is assumed to cover the fiber surface as a monolayer, then an estimate of the wet surface area of the fiber can be obtained. This estimate compares well with independent measurements of surface area.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1107
Author(s):  
Wakana A. Azuma ◽  
Satoru Nakashima ◽  
Eri Yamakita ◽  
Tamihisa Ohta

Leaf water storage is a complex interaction between live tissue properties (anatomy and physiology) and physicochemical properties of biomolecules and water. How leaves adsorb water molecules based on interactions between biomolecules and water, including hydrogen bonding, challenges our understanding of hydraulic acclimation in tall trees where leaves are exposed to more water stress. Here, we used infrared (IR) microspectroscopy with changing relative humidity (RH) on leaves of tall Cryptomeria japonica trees. OH band areas correlating with water content were larger for treetop (52 m) than for lower-crown (19 m) leaves, regardless of relative humidity (RH). This high water adsorption in treetop leaves was not explained by polysaccharides such as Ca-bridged pectin, but could be attributed to the greater cross-sectional area of the transfusion tissue. In both treetop and lower-crown leaves, the band areas of long (free water: around 3550 cm−1) and short (bound water: around 3200 cm−1) hydrogen bonding OH components showed similar increases with increasing RH, while the band area of free water was larger at the treetop leaves regardless of RH. Free water molecules with longer H bonds were considered to be adsorbed loosely to hydrophobic CH surfaces of polysaccharides in the leaf-cross sections.


Sign in / Sign up

Export Citation Format

Share Document