scholarly journals QUANTITATIVE INDICATORS OF COPPER-RESISTANT MICROORGANISMS DISTRIBUTION IN NATURAL ECOSYSTEMS

2021 ◽  
Vol 14 (1) ◽  
pp. 69-80
Author(s):  
O. А. Havryliuk ◽  

Copper is a highly toxic metal common in both natural and man-made ecosystems. The goal of the work was to determine the level of resistance of microorganisms of natural ecosystems to cationic form and organometallic complex of Cu2+. Microorganisms of 9 natural ecosystems of five geographic zones (the Antarctic, the Arctic, the Dead Sea (Israel), middle latitude (Ukraine) and the equatorial zone of South America (Ecuador) were investigated. Resistance of microorganisms was determined by cultivation in the medium with concentration gradient of Сu2+. The amount of Cu2+-resistant microorganisms in natural ecosystems was determined by colony counting on nutrient agar with Сu2+ citrate and Cu2+ cation. The Cu(II) concentration in soil and clay samples was analyzed by atomic absorption spectroscopy method. We have confirmed the hypothesis that microorganisms resistant to toxic Cu2+ compounds in high concentrations exist in any natural ecosystem. The resistance to Cu2+ cation was 8 – 31 and 14 –140 times less than to Cu2+ citrate in nutrient and mineral agar media respectively. The amount of Cu2+-resistant microorganisms in natural ecosystems reached hundreds and thousands at the presence of 175…15 500 ppm Cu2+. Thus, the soils, clays and sands of natural ecosystems are a “genetic resource” of copper-resistant microorganisms that are promising for development of novel biotechnology of purification of copper-containing wastewater and soil bioremediation.

2018 ◽  
Vol 100 (4) ◽  
pp. 745-766
Author(s):  
Lillian C. Woo

In the last fifty years, empirical evidence has shown that climate change and environmental degradation are largely the results of increased world population, economic development, and changes in cultural and social norms. Thus far we have been unable to slow or reverse the practices that continue to produce more air and water pollution, soil and ocean degradation, and ecosystem decline. This paper analyzes the negative anthropogenic impact on the ecosystem and proposes a new design solution: ecomimesis, which uses the natural ecosystem as its template to conserve, restore, and improve existing ecosystems. Through its nonintrusive strategies and designs, and its goal of preserving natural ecosystems and the earth, ecomimesis can become an integral part of stabilizing and rehabilitating our natural world at the same time that it addresses the needs of growing economies and populations around the world.


2013 ◽  
Vol 13 (7) ◽  
pp. 3793-3810 ◽  
Author(s):  
O. Meinander ◽  
S. Kazadzis ◽  
A. Arola ◽  
A. Riihelä ◽  
P. Räisänen ◽  
...  

Abstract. We have measured spectral albedo, as well as ancillary parameters, of seasonal European Arctic snow at Sodankylä, Finland (67°22' N, 26°39' E). The springtime intensive melt period was observed during the Snow Reflectance Transition Experiment (SNORTEX) in April 2009. The upwelling and downwelling spectral irradiance, measured at 290–550 nm with a double monochromator spectroradiometer, revealed albedo values of ~0.5–0.7 for the ultraviolet and visible range, both under clear sky and variable cloudiness. During the most intensive snowmelt period of four days, albedo decreased from 0.65 to 0.45 at 330 nm, and from 0.72 to 0.53 at 450 nm. In the literature, the UV and VIS albedo for clean snow are ~0.97–0.99, consistent with the extremely small absorption coefficient of ice in this spectral region. Our low albedo values were supported by two independent simultaneous broadband albedo measurements, and simulated albedo data. We explain the low albedo values to be due to (i) large snow grain sizes up to ~3 mm in diameter; (ii) meltwater surrounding the grains and increasing the effective grain size; (iii) absorption caused by impurities in the snow, with concentration of elemental carbon (black carbon) in snow of 87 ppb, and organic carbon 2894 ppb, at the time of albedo measurements. The high concentrations of carbon, detected by the thermal–optical method, were due to air masses originating from the Kola Peninsula, Russia, where mining and refining industries are located.


2021 ◽  
Vol 29 (1) ◽  
pp. 33-39
Author(s):  
Tatiana S. Smirnova ◽  
Elena A. Mazlova ◽  
Olga A. Kulikova ◽  
Ilya M. Ostrovkin ◽  
Adam M. Gonopolsky ◽  
...  

In recent years, significant efforts have been made to accelerate the economic development of the Arctic zone, leading to intense environmental pollution of this region, accompanied by the significant impact of accumulated environmental damage in the region. The solution to these problems is difficult due to the remoteness of these areas and severe climatic conditions. Therefore, it is important to evaluate the potential for restoration of arctic soils. For this purpose, various indicators are used, including biological ones. In the analyzed arctic soil samples, high concentrations of petroleum hydrocarbons (up to 47,000 mg/kg) and chloride-ions (0.10–0.14 wt %) were established. Microbioassay demonstrated a presence of hydrocarbon-oxidizing microorganisms: Penicillium, Azotobacter chroococcum, Bacillus subtilis, Pseudomonas oleovorans. A low enzymatic activity and specific Arctic climate point out a low self-restoration ability of the soil, demonstrated the need for its remediation. The microbioassay with microbial strains identification and soil remediation methods suitable for the Arctic zone were recommended.


2002 ◽  
Vol 357 (1421) ◽  
pp. 709-718 ◽  
Author(s):  
Egbert Giles Leigh ◽  
Geerat Jacobus Vermeij

Three types of evidence suggest that natural ecosystems are organized for high productivity and diversity: (i) changes not previously experienced by a natural ecosystem, such as novel human disturbances, tend to diminish its productivity and/or diversity, just as ‘random’ changes in a machine designed for a function usually impair its execution of that function; (ii) humans strive to recreate properties of natural ecosystems to enhance productivity of artificial ones, as farmers try to recreate properties of natural soils in their fields; and (iii) productivity and diversity have increased during the Earth's history as a whole, and after every major biotic crisis. Natural selection results in ecosystems organized to maintain high productivity of organic matter and diversity of species, just as competition among individuals in Adam Smith's ideal economy favours high production of wealth and diversity of occupations. In nature, poorly exploited energy attracts more efficient users. This circumstance favours the opening of new ways of life and more efficient recycling of resources, and eliminates most productivity–reducing ‘ecological monopolies’. Ecological dominants tend to be replaced by successors with higher metabolism, which respond to more stimuli and engage in more varied interactions. Finally, increasingly efficient predators and herbivores favour faster turnover of resources.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6224
Author(s):  
Kosuke Mori ◽  
Tomohiro Tabata

This study aims to develop a comprehensive method for evaluating the environmental cost/benefits of photovoltaic (PV) solar plant installation versus conserving natural ecosystems. First, the positive and negative impacts of installing PV solar plants in regions with natural ecosystems are reviewed. For focus and quantification, climate change mitigation and economic benefit were considered as benefits, and the loss of carbon sinks and biodiversity as well as disaster risk were considered as negatives. These items were also integrated as external costs using a life-cycle assessment method, and a ratio of positive versus negative impacts (P/N ratio) was developed, as part of our evaluation. The method was applied to a case study in Hyogo Prefecture, Japan, where 361 large PV solar plants have been installed in areas that previously supported natural ecosystems. Prior to the PV installation, 25.5% of the plants were cleared from the natural ecosystem. Consequently, the annualized benefits (costs) for these Hyogo plants were estimated to be 101.16 (73.88) million USD, which yielded a P/N ratio of 1.37, indicating that their benefits outweighed their costs. An economic benefit was found to be one of the parameters that significantly influenced the P/N ratio.


2016 ◽  
Vol 42 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Anatoliy A. Khapugin ◽  
Tatyana B. Silaeva ◽  
Anastasia A. Semchuk ◽  
Elena N. Kunaeva

Abstract Population-based studies of endangered plant species are key methods for assessment of the status for these plants at any territory. Plant species of the Orchidaceae family are sensitive components in natural ecosystems. That is why determination of the status for their populations can be considered as indicators for the status of natural ecosystem position as a whole. Investigations of three Orchidaceae species populations (Orchis militaris L., Epipactis palustris (L.) Crantz, Malaxis monophyllos (L.) Swartz) were carried out in Central Russia (Republic of Mordovia). Abundance, density, structure and dynamics of populations of these species were studied. Species composition of accompanying flora was established for each rare species. Some morphometrical parameters of individuals for the studied species were measured. Features of ontogenetic spectrum for Orchis militaris and Epipactis palustris populations were shown.


Author(s):  
Akira Inagaki ◽  
Daisuke Tanaka ◽  
Toshiaki Kanemoto

To prevent the warming global environment, the hydropower should occupy the attention of the electric power generation systems as clean and cool energy sources with the highest density. For the next leap in the hydroelectric power developments, however, we are under obligations to conserve natural ecosystems and/or to coexist with natures. To meet such circumstances, this paper proposes two kinds of the new type hydroelectric unit applicable to tidal currents, mountain torrents, rivers and/or water drain systems, and discusses the characteristics of the model turbine/unit.


2007 ◽  
Vol 7 (17) ◽  
pp. 4527-4536 ◽  
Author(s):  
S. Eckhardt ◽  
K. Breivik ◽  
S. Manø ◽  
A. Stohl

Abstract. Soils and forests in the boreal region of the Northern Hemisphere are recognised as having a large capacity for storing air-borne Persistent Organic Pollutants (POPs), such as the polychlorinated biphenyls (PCBs). Following reductions of primary emissions of various legacy POPs, there is an increasing interest and debate about the relative importance of secondary re-emissions on the atmospheric levels of POPs. In spring of 2006, biomass burning emissions from agricultural fires in Eastern Europe were transported to the Zeppelin station on Svalbard, where record-high levels of many air pollutants were recorded (Stohl et al., 2007). Here we report on the extremely high concentrations of PCBs that were also measured during this period. 21 out of 32 PCB congeners were enhanced by more than two standard deviations above the long-term mean concentrations. In July 2004, about 5.8 million hectare of boreal forest burned in North America, emitting a pollution plume which reached the Zeppelin station after a travel time of 3–4 weeks (Stohl et al., 2006). Again, 12 PCB congeners were elevated above the long-term mean by more than two standard deviations, with the less chlorinated congeners being most strongly affected. We propose that these abnormally high concentrations were caused by biomass burning emissions. Based on enhancement ratios with carbon monoxide and known emissions factors for this species, we estimate that 130 and 66 μg PCBs were released per kilogram dry matter burned, respectively. To our knowledge, this is the first study relating atmospheric PCB enhancements with biomass burning. The strong effects on observed concentrations far away from the sources, suggest that biomass burning is an important source of PCBs for the atmosphere.


2015 ◽  
Vol 12 (4) ◽  
pp. 438 ◽  
Author(s):  
Robert Holla ◽  
Stefan Schmitt ◽  
Udo Frieß ◽  
Denis Pöhler ◽  
Jutta Zingler ◽  
...  

Environmental context Reactive halogen species affect chemical processes in the troposphere in many ways. The reactive bromine species bromine monoxide (BrO) is found in high concentrations at the Dead Sea, but processes for its formation and its spatial distribution are largely unknown. Information on the vertical distribution of BrO at the Dead Sea obtained in this work may give insight into the processes leading to BrO release and its consequences. Abstract We present results of multi-axis differential optical absorption spectroscopy (MAX‐DOAS) and long‐path DOAS (LP‐DOAS) measurements from two measurement campaigns at the Dead Sea in 2002 and 2012. The special patterns of its dynamics and topography in combination with the high salt and especially bromide content of its water lead to the particular large atmospheric abundances of more than 100 ppt BrO close to the ground and in several hundred meters above ground level. We conclude that vertical transport barriers induced by the special dynamics in the Dead Sea Valley lead to an accumulation of aerosol and reactive bromine species. This occurs in situations of weak synoptic winds and of mountain induced thermal circulations. Thus BrO release strongly depends on the topography and local and meso-scale meteorology. In case of strong zonal winds, the Dead Sea valley is flushed and high BrO levels cannot accumulate. NO2 levels below 1–2 ppb seem to be a prerequisite for a high BrO production. We assume that at least a part of the missing NO2 might be converted to BrONO2 leading to a deposition of nitrate within the aerosol and acting as a reservoir for reactive bromine. From these measurements, it was possible for the first time to simultaneously retrieve vertical profiles of aerosols, BrO and NO2 and gain also information on the distribution at the Dead Sea, allowing for a thorough characterization of the chemical processes leading to halogen release in the context of the special atmospheric dynamics in the Dead Sea Valley.


2008 ◽  
Vol 5 (2) ◽  
pp. 281-290 ◽  
Author(s):  
G. A. Ebong ◽  
M. M. Akpan ◽  
V. N. Mkpenie

Dumpsites in Uyo and most cities in Nigeria are used nutrients rich soils for cultivating fruits and vegetables without regards to the risk of toxic metal pollution by the wastes. This development necessitated the research on the assessment of the impact of municipal and rural dumpsites on the metal levels of the underlying soils, the relationship between the dumpsite- soil metal content and the rate of bio-accumulation by plants, the effect of plant specie and plant part on the rate of metal uptake. Atomic absorption spectrophotometer was employed for the analysis of the samples and results obtained from municipal dumpsite soil indicated the following mean concentrations: Fe, 1711.20 μg/g; Pb, 43.28 ug/g; Zn, 88.34 ug/g; Ni, 12.18 ug/g; Cd, 14.10 ug/g and Cu, 56.33 ug/g. These concentrations were relatively higher than the following concentrations: Fe, 1016.98 ug/g; Pb, 18.57 ug/g; Zn, 57.90 ug/g; Ni, 7.98 ug/g; Cd, 9.25 ug/g and Cu, 33.70 ug/g recorded for the rural dumpsite soil. Consequently, plants grown on municipal dumpsites soil accumulated higher concentrations of the metals than those on rural dumpsites. Results obtained from this study also revealed that plants grown on dumpsite soils bio-accumulated higher metal concentrations than their counterparts obtained from normal agricultural soils. The ability of plants to bioaccumulate these metals were also observed as being different from one plant to the other and from one plant parts to the other. And apart from Fe and Zn which recorded higher concentrations in the leaves of the plants studied, other metals recorded higher concentrations in the roots. The general results obtained revealed that the levels of Cd in dumpsite-soil were above the standard while the levels of Cd and Pb in plants were also above the recommended levels in plants. The implications of these high concentrations of these metals in soil and plants have been discussed. Some useful recommendations on the proper handling of wastes to reduce toxic metal loads at dumpsites have also been highlighted.


Sign in / Sign up

Export Citation Format

Share Document