Health Supervision for Children With Down Syndrome

PEDIATRICS ◽  
1994 ◽  
Vol 93 (5) ◽  
pp. 855-859
Author(s):  

These guidelines are designed to assist the pediatrician in caring for the child in whom the diagnosis of Down syndrome has been confirmed by karyotype. Although the pediatrician's initial contact with the child is usually during infancy, occasionally the pregnant woman who has been given the prenatal diagnosis of Down syndrome will be referred for advice. Therefore, these guidelines offer advice for this situation as well. Children with Down syndrome have multiple malformations and mental retardation due to the presence of extra genetic material from chromosome 21. Although the phenotype is variable, usually there is enough consistency to enable the experienced clinician to suspect the diagnosis. Among the more common physical features are hypotonia, small brachycephalic head, epicanthic folds, flat nasal bridge, upward slanting palpebral fissures, Brushfield spots, small mouth, small ears, excess skin at the nape of the neck, single transverse palmar crease, and short fifth finger with clinodactyly. A wide space, often with a deep fissure, between the first and second toes is also common. The degree of mental retardation is variable, ranging from mild (IQ, 50 to 70) to moderate (IQ, 35 to 50), and only occasionally to severe (IQ, 20 to 35). There is an increased risk of congenital heart disease (50%); leukemia (<1%); deafness (75%); serous otitis media (50% to 70%); Hirschsprung disease (<1%); gastrointestinal atresias (12%); eye disease (60%), including cataracts (15%) and severe refractive errors (50%); acquired hip dislocation (6%); and thyroid disease (15%). Social quotient may be improved with early intervention techniques.

2019 ◽  
Vol 59 (3) ◽  
pp. 125-9
Author(s):  
Nurul Noviarisa ◽  
Eva Chundrayetti ◽  
Gustina Lubis

Background Down syndrome is characterized by physical and mental retardation and caused by chromosome 21 (Hsa21) abnormalities. The S100B is a protein that is overproduced in Down syndrome due to overexpression of chromosome 21 genes. Comorbidities caused by S100B in Down syndrome are cognitive deterioration and early onset of dementia. Objective To assess for a possible association between S100B protein and intelligence levels in children with Down syndrome. Method This cross-sectional study included students in a special needs school in Padang, West Sumatera, who had the characteristic clinical features of Down syndrome and trisomy 21 by chromosome analysis. Examination of S100B levels was carried out using an enzyme-linked immunosorbent assay (ELISA) method. Intelligence quotient (IQ) was measured using the 4th edition of the Wechlser Intelligence Scale for Children (WISC-IV) method. Results A total of 39 children with Down syndrome participated in the study. There were 25 children with mild mental retardation and 15 children with moderate-severe mental retardation. The mean S100B levels were not significantly different between groups [479.1 (SD 204) pg/mL in the mild mental retardation group and 458.7 (SD 158) pg/mL in the moderate-severe mental retardation group; P > 0.05]. The mean S100B level was significantly higher in subjects aged ≤ 10 years than in those aged > 10 years [566.9 (SD 210.0) pg/mL and 434.4 (SD 167.2) pg/mL, respectively (P<0.05)]. Conclusion There is no association between S100B and intelligence levels in children with Down syndrome. There is a significant association between higher S100B levels and younger age in children with Down syndrome.


2021 ◽  
Vol 23 ◽  
Author(s):  
K. A. L. Hasaart ◽  
E. J. M. Bertrums ◽  
F. Manders ◽  
B. F. Goemans ◽  
R. van Boxtel

Abstract Children show a higher incidence of leukaemia compared with young adolescents, yet their cells are less damaged because of their young age. Children with Down syndrome (DS) have an even higher risk of developing leukaemia during the first years of life. The presence of a constitutive trisomy of chromosome 21 (T21) in DS acts as a genetic driver for leukaemia development, however, additional oncogenic mutations are required. Therefore, T21 provides the opportunity to better understand leukaemogenesis in children. Here, we describe the increased risk of leukaemia in DS during childhood from a somatic evolutionary view. According to this idea, cancer is caused by a variation in inheritable phenotypes within cell populations that are subjected to selective forces within the tissue context. We propose a model in which the increased risk of leukaemia in DS children derives from higher rates of mutation accumulation, already present during fetal development, which is further enhanced by changes in selection dynamics within the fetal liver niche. This model could possibly be used to understand the rate-limiting steps of leukaemogenesis early in life.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4373-4373
Author(s):  
Dirk Reinhardt ◽  
Kristin Wortmann ◽  
Miriam Kolar ◽  
Jan H. Klusmann ◽  
Ulrike Puhlmann ◽  
...  

Abstract Children with Down Syndrome (DS) are at an 150 fold increased risk to develop acute megakaryoblastic leukemia (AMKL) within the first 4 years of life. About 10% of newborns with trisomy 21 showed transient myeloproliferative disorder (TMD). Although mutations of the transcriptional factor GATA1, resulting in the shortened GATA1s have been shown in almost all blasts in DS-AMKL and TMD the predisposition to leukemiogenesis related to trisomy 21 is not clear. TMD occurred during embryonic stress hematopoiesis leading to the hepatic proliferation of the GATA1s positive blasts. Typically blasts disappeared within the first 3 month of live, however after a median time of 1.3years (0.6 to 3.7 years) 20% of the children suffered AMKL and required intensive cytostatic treatment. The expression of chromosome 21 encoded hematological transcription factors (TFs) such RUNX1, ETS-2 and ERG were analysed in leukemic blasts from DS- TMD(n=7), DS-AMKL (n=25), DS without hematological disorder (n=10), AMKL (n=10) and healthy controls (n=7) by qRT-PCR. Results: No increase of RUNX1, ETS-2 and ERG expression could be shown. By contrast, ERG was decrease in all leukemias and in DS without hematological disorder (p Anova.<0.002). GATA1s was significantly overexpressed in TMD and DS-AMKL (pAnova <0.02), whereas GATA1 expression in AMKL and controls was not changed. GATA2 was elevated (pAnova <0.01) in all megakaryoblastic leukemias, with or without DS (pAnova <0.0001). PU.1, typically associated with early lymphatic differentiation and granulopoiesis was down regulated in all megakaryoblastic leukemias and, surprisingly, in DS without hematological disorder. This confirmed previously reported results by gene-array analysis1. To get further insight in the predisposition caused by trisomy 21 we analysed regenerating hematopoiesis in DS (n=14) partly resembling embryonic stress hematopoiesis. Correlated to the amount of bone marrow activation (CD38 positivity) a myeloid cell population (CD13/CD33 positive); with the co-expression of CD56 (NCAM) and CD36 (thrombospondin-receptor) could be detected by immunophenotyping (median percentage all nucleated bone marrow cells: 73±10%). In children without DS but regenerating hematopoiesis (n=41) a similar population of 4.6±1.8% (p<0.00001) could be detected. For further analysis the CD33/CD56 positive cells were sorted (FACSVantage). The cells showed normal myeloid morphology and differentiation, lack of GATA1s mutation, but an aberrant TF expression pattern. RUNX1 was 10-fold and ETS-2 5-fold higher expressed compared to controls (p<0.012). Summarized, (1) DS-AMKL and TMD leukemic blasts showed no general gene-dosage effect. However, (2) in stimulated bone marrow (stress hematopoiesis) trisomy 21 led to an overexpression of chromosome 21 encoded TFs, which might contribute to leukemiogenesis.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 876 ◽  
Author(s):  
Lewis Buss ◽  
Elizabeth Fisher ◽  
John Hardy ◽  
Dean Nizetic ◽  
Jurgen Groet ◽  
...  

Down syndrome (DS), which arises from trisomy of chromosome 21, is associated with deposition of large amounts of amyloid within the central nervous system. Amyloid accumulates in two compartments: as plaques within the brain parenchyma and in vessel walls of the cerebral microvasculature. The parenchymal plaque amyloid is thought to result in an early onsetAlzheimer’s disease (AD) dementia, a phenomenon so common amongst people with DS that it could be considered a defining feature of the condition. The amyloid precursor protein (APP) gene lies on chromosome 21 and its presence in three copies in DS is thought to largely drive the early onset AD. In contrast, intracerebral haemorrhage (ICH), the main clinical consequence of vascular amyloidosis, is a more poorly defined feature of DS. We review recent epidemiological data on stroke (including haemorrhagic stroke) in order to make comparisons with a rare form of familial AD due to duplication (i.e. having three copies) of the APP region on chromosome 21, here called ‘dup-APP’, which is associated with more frequent and severe ICH. We conclude that although people with DS are at increased risk of ICH, this is less common than in dup-APP, suggesting the presence of mechanisms that act protectively. We review these mechanisms and consider comparative research into DS and dup-APP that may yield further pathophysiological insight.


The Physician ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. c9
Author(s):  
Triya Chakravorty ◽  
Irene Roberts

Children with Down syndrome (DS) due to trisomy 21 (T21) are at an increased risk of developing the neonatal preleukaemic disorder transient abnormal myelopoiesis (TAM), which may transform into childhood acute myeloid leukaemia (ML-DS). Leukaemic cells in TAM and ML-DS have acquired mutations in the GATA1 gene. Although it is clear that acquired mutations in GATA1 are necessary for the development of TAM and ML-DS, questions remain concerning the mechanisms of disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Marta Pilar Osuna-Marco ◽  
Mónica López-Barahona ◽  
Blanca López-Ibor ◽  
Águeda Mercedes Tejera

People with Down syndrome have unique characteristics as a result of the presence of an extra chromosome 21. Regarding cancer, they present a unique pattern of tumors, which has not been fully explained to date. Globally, people with Down syndrome have a similar lifetime risk of developing cancer compared to the general population. However, they have a very increased risk of developing certain tumors (e.g., acute leukemia, germ cell tumors, testicular tumors and retinoblastoma) and, on the contrary, there are some other tumors which appear only exceptionally in this syndrome (e.g., breast cancer, prostate cancer, medulloblastoma, neuroblastoma and Wilms tumor). Various hypotheses have been developed to explain this situation. The genetic imbalance secondary to the presence of an extra chromosome 21 has molecular consequences at several levels, not only in chromosome 21 but also throughout the genome. In this review, we discuss the different proposed mechanisms that protect individuals with trisomy 21 from developing solid tumors: genetic dosage effect, tumor suppressor genes overexpression, disturbed metabolism, impaired neurogenesis and angiogenesis, increased apoptosis, immune system dysregulation, epigenetic aberrations and the effect of different microRNAs, among others. More research into the molecular pathways involved in this unique pattern of malignancies is still needed.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2721-2721
Author(s):  
Paul Lee ◽  
Rahul Bhansali ◽  
Malini Rammohan ◽  
Nobuko Hijiya ◽  
Shai Izraeli ◽  
...  

Abstract Children with Down syndrome have a spectrum of associated disorders including a 20-fold increased incidence of B-cell acute lymphoblastic leukemia (DS-ALL). Although a number of genetic alterations have been found in this ALL subtype, such as activating mutations in JAK2 and overexpression of CRLF2, the mechanisms by which trisomy 21 promotes the leukemia are largely unknown. Previous studies have implicated chromosome 21 genes HMGN1 and DYRK1A in both malignant and normal lymphopoiesis. DYRK1A is a member of the dual-specificity tyrosine phosphorylation-regulated kinase family that has been well studied in non-hematopoietic tissues. Its targets include proteins that regulate multiple pathways including cell signaling, cell cycle, and brain development. We have previously shown that DYRK1A is a megakaryoblastic leukemia-promoting gene through its negative regulation of NFAT transcription factors. Furthermore, in studies with a conditional Dyrk1a knock-out mouse, we found that the kinase is required for lymphoid, but not myeloid cell development. In developing lymphocytes, Dyrk1a regulates the cell cycle by destabilizing cyclin D3. Consequently, loss of Dyrk1a resulted in the failure of these cells to switch from a proliferative to quiescent phase for subsequent maturation (Thompson et al. J. Exp. Med. 2015 212:953-70). Despite this deficiency in exiting the cell cycle, Dyrk1a-deficient lymphocytes also exhibit impaired proliferation before undergoing apoptosis. These data reveal a critical role for DYRK1A in lymphopoiesis and suggest that it may be a target for therapeutic intervention. We assayed the activity of the highly selective and potent DYRK1 inhibitor, EHT 1610, in multiple ALL cell lines. EHT 1610 inhibited the growth of Jurkat and MHH-CALL-4 cells with EC50s of 0.83mM and 0.49mM, respectively. Next, we treated primary human ALL blasts with EHT 1610 and the less selective DYRK1A inhibitor harmine. Growth of 16 out of 30 specimens, which included DS-ALL, pre-B ALL, and T-ALL, was sensitive to DYRK1A inhibition at doses between 0.5 and 10mM. Of note, growth of 9 of the 11 of the DS-ALL samples was inhibited by EHT 1610. This result indicates that the increased dosage of DYRK1A in DS samples sensitizes the cells to DYRK1A inhibition. To further study the contributions of DYRK1A to normal and malignant lymphopoiesis, we performed phosphoproteomic analysis on primary murine pre-B cells treated with EHT 1610. After 2 hours of EHT 1610 treatment, the cells were collected and analyzed for changes in the phosphoproteome. Phosphorylation of 36 proteins was significantly altered. Bioinformatics analysis led to the identification of a number of notable pathways that appear to be regulated by DYRK1A including cell cycle, cell division and mitosis, RNA metabolism, and JAK-STAT signaling. Differentially phosphorylated proteins included geminin, which is important in cell division and whose loss enhances megakaryopoiesis, and POLR2M, which is intriguing because DYRK1A phosphorylates the CTD of RNA Pol II and binds chromatin at specific sites in glioblastoma cells. Another interesting target is STAT3, which is phosphorylated by DYRK1A on Ser727, a residue whose phosphorylation is required for maximal STAT3 activation. Treatment of murine pre-B cells with EHT 1610 significantly reduced the level of phosphorylation of Ser727 and Tyr705, suggesting that DYRK1A may provide a priming event for STAT3 activation similar to its priming effect on GSK3b phosphorylation. Consistent with a role for JAK/STAT signaling and STAT3 activity, B-ALL cells were highly sensitive to ruxolitinib therapy. Taken together, our study suggests that DYRK1A is a therapeutic target in DS-ALL and likely functions in part by enhancing JAK/STAT signaling. Disclosures No relevant conflicts of interest to declare.


2013 ◽  
Vol 60 (4) ◽  
pp. 153-161 ◽  
Author(s):  
Fumihiro Yoshikawa ◽  
Yoh Tamaki ◽  
Hisa Okumura ◽  
Zenzo Miwa ◽  
Masaaki Ishikawa ◽  
...  

Abstract The purpose of this study was to identify the risk factors associated with low peripheral oxygen saturation (SpO2) and delayed recovery of dental patients with disabilities after intravenous sedation. A total of 1213 patients with disabilities were retrospectively investigated with respect to demographic parameters and sedation conditions. Multivariate logistic analyses were conducted for patients with an SpO2 &lt;90% and a recovery period of &gt;60 minutes to identify the risk factors for poor sedation conditions. A significant odds ratio related to decreased SpO2 was observed for age, sex, midazolam and propofol levels, concurrent use of nitrous oxide, cerebral palsy, Down syndrome, and mental retardation. The most problematic patients were those diagnosed with Down syndrome (odds ratio, 3.003–7.978; 95% confidence interval; P &lt; .001). Decision tree analysis showed an increased risk of decreased SpO2 in males with Down syndrome or after administration of &gt;0.493 mg/kg propofol in combination with midazolam. An increased risk of delayed awakening was seen in patients aged less than 21 years and in males administered &gt;0.032 mg/kg of midazolam. Intravenous sedation for dental patients with disabilities, particularly those with cerebral palsy, Down syndrome, or mental retardation, increases the risk of decreased SpO2. In addition, delayed recovery is expected after midazolam administration.


1997 ◽  
Vol 84 (2) ◽  
pp. 499-504 ◽  
Author(s):  
Mitsuru Kokubun ◽  
Takashi Shinmyo ◽  
Mizue Ogita ◽  
Keiichi Morita ◽  
Masaki Furuta ◽  
...  

To confirm the 1994 findings of Okuzumi, Haishi, and Kokubun, the displacement of the center of foot pressure, one-foot balance and bead sway were measured in children with Down syndrome ( n = 11) compared to those with other types of mental retardation ( n = 17). The magnitudes of the displacement of the center of foot pressure and head sway were not significantly different between the Down group and other forms of mental retardation, whereas the performance of one-foot balance was significantly lower in the Down group. The mean frequencies of sway waves were generally higher in the Down group, and the differences between the two groups were significant except for sagittal head sway. The results generally supported the prior findings. We proposed that it was not the magnitude of the displacement of the center of foot pressure but rather the manner of the whole body's sway which might be related to postural control.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 5035-5035
Author(s):  
Marjolein Blink ◽  
Trudy Buitenkamp ◽  
Astrid A Danen-van Oorschot ◽  
Valerie de Haas ◽  
Dirk Reinhardt ◽  
...  

Abstract Abstract 5035 Children with Down Syndrome (DS) have an increased risk of developing leukemia, including both acute myeloid (ML-DS), as well as acute lymphoblastic leukemia (DS-ALL). ML-DS can be preceded by a pre-leukemic clone in newborns (transient leukemia-TL), which in most cases resolves spontaneously. Janus Kinase (JAK) 1-3 belongs to a family of intracellular non-receptor protein tyrosine kinases that transduce cytokine-mediated signals via the JAK-STAT pathway. JAK plays an important role in regulating the processes of cell proliferation, differentiation and apoptosis in response to cytokines and growth factors. Mullighan et al. described JAK 1-3 mutations in non-DS high-risk childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL; PNAS, 2009). In T-ALL, JAK-1 mutations are a frequent event (∼25%) as reported among others by Jeong et al (Clinical Cancer Research, 2008). Mutations in JAK-2 and JAK-3 have been described in TL and ML-DS. Bercovich et al. recently reported mutations within the pseudokinase domain of JAK-2 in DS-ALL patients (Lancet 2008). This activating JAK-2 mutation differs from the V617F exon 14 mutation found in myeloproliferative diseases. However, JAK-1 has never been investigated in Down syndrome leukemias. Therefore we performed mutational analysis of the pseudokinase and kinase domains of JAK-1, 2 and 3 by direct sequencing in 8 TL, 16 ML-DS and 35 DS-ALL samples taken at initial diagnosis. The TL and ML-DS samples were unpaired. In the ML-DS group, 12 patients were classified as FAB M7, 3 as FAB M0 and 1 as FAB M6; all 35 DS-ALL patients were classified as BCP-ALL. Mutations in JAK-1 were found in 1 ML-DS patient (D625R) and in 1 DS-ALL patient (V651M). These mutations were localised in the same region of the pseudokinase domain, but not identical to the activating mutations in JAK1 described in high-risk ALL (Mullighan et al., PNAS 2009). The JAK-1 mutated ML-DS patient had a complex karyogram, and the DS ALL patient a normal karyotype. No events occurred in either of the patients with a follow-up of 2.4 and 3.1 years, respectively. JAK-2 activating mutations at position R683 were found in 5/35 (14.3%) of the DS-ALL patients. These patients had diverse cytogenetic aberrations, and had no events at a median follow up of 4.4 years. In the TL and ML-DS patients no mutations were identified in JAK-2. For JAK-3, 1 TL-patient (13%) and 1 ML-DS patient (6.3%) harboured the A573V-mutation. This activating mutation is previously described in ML-DS patients and the megakaroyblastic cell line CMY ((Kiyoi et al, Leukemia 2007). Because the mutations occur in both TL and ML-DS, this suggests that they do not play a role in the clonal progression model from TL to ML-DS. A mutation at JAK3 R1092C, which to our knowledge has never been reported before, was found in 1 DS-ALL patient. This patient had a deletion on chromosome 12 (p11p13), and was in CCR with a follow up of 5 years. In conclusion, JAK-mutations are rare in DS-leukemias, except for JAK-2 mutations in DS-ALL, which occur in approximately 15% of cases. The rarity of JAK-1 mutations in DS is in accordance with the rarity of T-ALL in DS. Of interest, none of the DS ALL cases with a JAK-2 mutation relapsed so far, which differs from the patients with JAK-2 mutations that were recently in high-risk BCP-ALL. Hence, JAK-2 may be an interesting novel therapeutic target. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document