scholarly journals СТИМУЛЯЦИЯ УЛЬТРАЗВУКОМ НАКОПЛЕНИЯ БИОМАССЫ МОЛОЧНОКИСЛЫХ И ПРОПИОНОВОКИСЛЫХ БАКТЕРИЙ ПРИ ГЛУБИННОМ КУЛЬТИВИРОВАНИИ

Author(s):  
D. A. Durnikin ◽  
M. M. Silantyeva ◽  
O. V. Ereshchenko

<p>Lactic and propionic bacteria are actively used as feed and food biopreservatives. The industrial production of these bacteria is carried out using known standard biotechnological approaches and equipment. However, the modern requirements to the volumes of their production require the development of new technologies providing the more intensive growth of bacterial biomass. One of the possible ways to do it is the use of nonspecific stimulators of chemical or physical origin. The stimulating effect of ultrasound on live systems attracts attention of many researchers. Depending on the sonication parameters and conditions, the impact of ultrasound on cell cultures can either stimulate or suppress their life processes. The possibility of the ultrasound stimulation of the biomass accumulation process has been studied for submerged bacterial cultures of <em>Lactococcus lactis </em>VPKM B-2092<em>, Lactobacillus plantarum</em> VPKM B-4173<em>, </em>and <em>Propionibacterium</em><em> </em><em>acidipropionici </em>VPKM B-2092<em>. </em>The inoculum with cell contentration of 1 · 10<sup>8</sup> mL<sup>-1</sup> was sonicated at 880 kHz and energy density varied within 0.1-0.7 W/cm<sup>3</sup> using a specially designed cuvette, through which the cell suspension was introduced into a fermenter at a rate of 10 mL/s that provided the total sonication time equal to 100-120 seconds. As a signal source, a standard therapeutical ultrasound apparatus UZT-1.01F equipped with a sweep generator was used.</p><p>For all three cultures, the ultrasound stimulation resulted in a significant increase in the optical density of culture broth comparing to the control and the corresponding increase of the cell concentration. The optimum sonication energy density for the <em>Lactococcus lactis </em>VPKM B-2092<em>, Lactobacillus plantarum</em> VPKM B-4173<em>, </em>and <em>Propionibacterium</em><em> </em><em>acidipropionici </em>VPKM B-2092 was equal to 0.5, 0.3-0.5 и 0.3<em> </em>W/cm<sup>3</sup>, respectively. Comparing to the control, the cell count of these strains in the culture broth increased in 28.6, 9, and 16.7 times, respectively.</p><p>Thus, the ultrasound stimulation of inoculum provides a significant increase in the biomass of cells producing lactic and propionic acid that, in turn, increases the economic efficiency of their industrial use. Since the mechanisms of such stimulating action of ultrasound are well-studied, and the exploitation of ultrasound generators is simple and cheap, the further development of the ultrasound stimulation approach seems to be very promising for the industrial microbiology.</p><p> </p>

Author(s):  
Lara Santolin ◽  
Saskia Waldburger ◽  
Peter Neubauer ◽  
Sebastian L. Riedel

Recent studies of the impact and dimension of plastic pollution have drawn the attention to finding more sustainable alternatives to fossil-based plastics. Microbially produced polyhydroxyalkanoates (PHAs) biopolymers are strong candidates to replace conventional plastic materials, due to their true biodegradability and versatile properties. However, widespread use of these polymers is still hindered by their high cost of production. In the present study, we target high yields of the PHA copolymer poly(hydroxybutyrate-co-hydroxyhexanoate) [P(HB-co-HHx)] using a substrate-flexible two-stage fed-batch approach for the cultivation of the recombinant Cupriavidus necator strain Re2058/pCB113. A more substrate-flexible process allows to cope with constant price fluctuations and discontinuous supply of feedstocks on the market. Utilizing fructose for biomass accumulation and rapeseed oil for polymer production resulted in a final biomass concentration of 124 g L–1 with a polymer content of 86 wt% holding 17 mol% of HHx. Productivities were further optimized by operating the biomass accumulation stage in a “drain and fill” modus where 10% of the culture broth was recycled for semi-continuous biomass accumulation, after transferring 90% to a second bioreactor for PHA production. This strategy succeeded in shortening process times rising productivity yields to ∼1.45 g L–1 h–1.


2017 ◽  
pp. 111-140 ◽  
Author(s):  
R. Kapeliushnikov

The paper provides a critical analysis of the idea of technological unemployment. The overview of the existing literature on the employment effects of technological change shows that on the micro-level there exists strong and positive relationship between innovations and employment growth in firms; on the sectoral level this correlation becomes ambiguous; on the macro-level the impact of new technologies seems to be positive or neutral. This implies that fears of explosive growth of technological unemployment in the foreseeable future are exaggerated. Our analysis further suggests that new technologies affect mostly the structure of employment rather than its level. Additionally we argue that automation and digitalisation would change mostly task sets within particular occupations rather than distribution of workers by occupations.


2020 ◽  
pp. 15-18
Author(s):  
Inna R. Kilmetova ◽  
◽  
Igor A. Rodin ◽  
Nazira I. Khayrullina ◽  
Nikolay G. Fenchenko ◽  
...  

Summary. The disbalanced feeding and the uneven distribution of micro- and macroelements in the environment leads to a trace element, in particular hypomelanosis. To accelerate the growth and preservation of young farm animals include in the diet of various biological additives and drugs, which include selenium. For stimulation of weight gain in the livestock industry, as well as for the prevention and treatment of pathological processes in addition to micro - and macrouse amino acids, primarily methionine. The aim of this work was to study the influence of composition of DAFS-25+Polizon on morpho-biochemical parameters of blood and functional state of the liver in fattening bulls of black-motley breed in the conditions of the Republic of Bashkortostan. Experiments using were conducted on bull-calves of black-motley breed of the properties in the properties age from 6 to 15 months. The first experimental group during the experiment was additionally given the composition of DAFS-25+Polizon at a dose of 2 mg/kg, the animals of the control group received a standard diet. To assess the impact of the composition DAFS-25+Polizon on metabolism cattle studied morphological and biochemical indicators of blood and conducted histological examination of the liver. It is established that the use of the composition of DAFS-25+Polizon at a dose of 2 mg/kg increases the number of erythrocytes and hemoglobin in the experimental group and reduces the amount of white blood cells. The serum content of total protein, phosphorus and calcium increases in the group of experimental animals. Microscopic examination of the liver revealed no changes in the structure of the organ and hepatocytes in the experimental group, whereas in the control group hemodynamic disorders and dystrophic changes in liver cells were observed. Thus, the use of the composition DAFS-25+Polizon at a dose of 2 mg/kg of live weight in fattening bulls black-and-white breed contributes to the increase of redox processes in the body, stimulation of metabolism, prevent the development of liver disorders of cellular mechanisms of metabolism, optimizes the structure of the liver, which generally provides higher productivity.


Emerging technologies have always played an important role in armed conflict. From the crossbow to cyber capabilities, technology that could be weaponized to create an advantage over an adversary has inevitably found its way into military arsenals for use in armed conflict. The weaponization of emerging technologies, however, raises challenging legal issues with respect to the law of armed conflict. As States continue to develop and exploit new technologies, how will the law of armed conflict address the use of these technologies on the battlefield? Is existing law sufficient to regulate new technologies, such as cyber capabilities, autonomous weapons systems, and artificial intelligence? Have emerging technologies fundamentally altered the way we should understand concepts such as law-of-war precautions and the principle of distinction? How can we ensure compliance and accountability in light of technological advancement? This book explores these critical questions while highlighting the legal challenges—and opportunities—presented by the use of emerging technologies on the battlefield.


2019 ◽  
Vol 10 (4) ◽  
pp. 106
Author(s):  
Bader A. Alyoubi

Big Data is gaining rapid popularity in e-commerce sector across the globe. There is a general consensus among experts that Saudi organisations are late in adopting new technologies. It is generally believed that the lack of research in latest technologies that are specific to Saudi Arabia that is culturally, socially, and economically different from the West, is one of the key factors for the delay in technology adoption in Saudi Arabia. Hence, to fill this gap to a certain extent and create awareness about Big Data technology, the primary goal of this research was to identify the impact of Big Data on e-commerce organisations in Saudi Arabia. Internet has changed the business environment of Saudi Arabia too. E-commerce is set for achieving new heights due to latest technological advancements. A qualitative research approach was used by conducting interviews with highly experienced professional to gather primary data. Using multiple sources of evidence, this research found out that traditional databases are not capable of handling massive data. Big Data is a promising technology that can be adopted by e-commerce companies in Saudi Arabia. Big Data’s predictive analytics will certainly help e-commerce companies to gain better insight of the consumer behaviour and thus offer customised products and services. The key finding of this research is that Big Data has a significant impact in e-commerce organisations in Saudi Arabia on various verticals like customer retention, inventory management, product customisation, and fraud detection.


Horticulturae ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 1
Author(s):  
Athanasios Koukounaras

Greenhouse horticulture is one of the most intensive agricultural systems, with the advantages of environmental parameter control (temperature, light, etc.), higher efficiency of resource utilization (water, fertilizers, etc.) and the use of advanced technologies (hydroponics, automation, etc.) for higher productivity, earliness, stability of production and better quality. On the other hand, climate change and the application of high inputs without suitable management could have negative impacts on the expansion of the greenhouse horticulture sector. This special issue gathers twelve papers: three reviews and nine of original research. There is one review that focuses on irrigation of greenhouse crops, while a second surveys the effects of biochar on container substrate properties and plant growth. A third review examines the impact of light quality on plant–microbe interactions, especially non-phototrophic organisms. The research papers report both the use of new technologies as well as advanced cultivation practices. In particular, new technologies are presented such as dye-sensitized solar cells for the glass cover of a greenhouse, automation for water and nitrogen deficit stress detection in soilless tomato crops based on spectral indices, light-emitting diode (LED) lighting and gibberellic acid supplementation on potted ornamentals, the integration of brewery wastewater treatment through anaerobic digestion with substrate-based soilless agriculture, and application of diatomaceous earth as a silica supplement on potted ornamentals. Research studies about cultivation practices are presented comparing different systems (organic-conventional, aeroponic-nutrient film technique (NFT)-substrate culture), quantitative criteria for determining the quality of grafted seedlings, and of wild species as alternative crops for cultivation.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4663
Author(s):  
Janaina Cavalcanti ◽  
Victor Valls ◽  
Manuel Contero ◽  
David Fonseca

An effective warning attracts attention, elicits knowledge, and enables compliance behavior. Game mechanics, which are directly linked to human desires, stand out as training, evaluation, and improvement tools. Immersive virtual reality (VR) facilitates training without risk to participants, evaluates the impact of an incorrect action/decision, and creates a smart training environment. The present study analyzes the user experience in a gamified virtual environment of risks using the HTC Vive head-mounted display. The game was developed in the Unreal game engine and consisted of a walk-through maze composed of evident dangers and different signaling variables while user action data were recorded. To demonstrate which aspects provide better interaction, experience, perception and memory, three different warning configurations (dynamic, static and smart) and two different levels of danger (low and high) were presented. To properly assess the impact of the experience, we conducted a survey about personality and knowledge before and after using the game. We proceeded with the qualitative approach by using questions in a bipolar laddering assessment that was compared with the recorded data during the game. The findings indicate that when users are engaged in VR, they tend to test the consequences of their actions rather than maintaining safety. The results also reveal that textual signal variables are not accessed when users are faced with the stress factor of time. Progress is needed in implementing new technologies for warnings and advance notifications to improve the evaluation of human behavior in virtual environments of high-risk surroundings.


2021 ◽  
Vol 13 (11) ◽  
pp. 6372
Author(s):  
Vincenzo Varriale ◽  
Antonello Cammarano ◽  
Francesca Michelino ◽  
Mauro Caputo

The digital transformation of supply chains should revolutionize entire management processes and improve various aspects of sustainability. In particular, the plans of Industry 4.0 aim towards a digitization of several procedures by exploiting emerging technologies such as the Internet of Things, RFID and blockchain. The purpose of this study is to highlight how order and disruption events processes can be improved with the adoption of emerging technologies and how this reflects on the improvement of sustainability aspects. The study is based on the comparison of two simulation scenarios between three actors in the cheese supply chain. In particular, a first traditional scenario “as is” is simulated without the use of new technologies and is compared to a second scenario “to be” that adopts IoT, RFID and blockchain. The results show an improvement in time performance for managing both perfect and non-compliant orders. The developed framework highlights the impact of new technologies on sustainability aspects, showing further managerial implications.


Sign in / Sign up

Export Citation Format

Share Document