scholarly journals Incidence of mercerization treatment in the mechanical properties of bamboo fibre bundles "Guadua Angustifolia Kunth" from colombian origin

DYNA ◽  
2019 ◽  
Vol 86 (210) ◽  
pp. 156-163 ◽  
Author(s):  
Leidy Johana Quintero Giraldo ◽  
Luis Javier Cruz ◽  
Jaime Alexis García ◽  
Alejandro Alcaraz ◽  
Eugenia González ◽  
...  

In this article, bamboo fibre bundles of "Guadua Angustifolia Kunth" specie were isolated from different locations of the basa zone: upper, middle and lower, through mechanical extraction method. The elastic modulus and the tensile strength were obtained with preliminary tensile tests. Applying the statistical analysis known as ANOVA, it was determined that the mechanical properties are similar in all the extension of the basa zone. From there, fibre bundles were extracted randomly, and a part of the fibre bundles was treated with NaOH (mercerization). Later, tensile tests with different calibration lengths were made for calculate the elastic modulus and the tensile strength of the treated and untreated fibre bundles. Best results belonged to the treated fibre bundles. A good correspondence between the results obtained in this work and the results reported in the literature was concluded. 

2000 ◽  
Vol 9 (4) ◽  
pp. 096369350000900 ◽  
Author(s):  
C. Gonzalez ◽  
J. Llorca

The effect of processing on the mechanical properties of Sigma 1140+ SiC fibres was studied through tensile tests carried out on pristine Sigma 1140+ SiC fibres and on fibres extracted from a Ti-6A1-4V-matrix composite. The elastic modulus and the tensile strength were computed after measuring carefully the fibre diameter. The characteristic fibre strength was reduced by 20% and the Weibull modulus by half during composite processing. The analysis of the fracture surfaces in the scanning electron microscope showed that the strength-limiting defects were located around the tungsten core in pristine fibres and predominantly at the surface in fibres extracted from the composite panels. These latter defects were nucleated by the mechanical stresses generated on the fibres during the panel consolidation.


2011 ◽  
Vol 299-300 ◽  
pp. 460-465 ◽  
Author(s):  
Li Zhang ◽  
Xiu Ping Dong ◽  
Hao Chen

By designing different formulations of composites and adopting optimized technology including extrusion and molding, the different composites with various content microcapsules were prepared. The results of the tensile tests show that with the increasing content of self-healing microcapsules in the glass fiber reinforced nylon composites, the mechanical properties of the composites will change, i.e. tensile strength, elastic modulus will decrease. But there is little effect on the mechanical properties of the composite gears if the content of self-healing microcapsules is less than 3.5%, and the technology of self-healing microcapsules used in the polymer composite gear is feasible.


2018 ◽  
Vol 64 (No. 4) ◽  
pp. 202-208
Author(s):  
Margus Arak ◽  
Kaarel Soots ◽  
Marge Starast ◽  
Jüri Olt

In order to model and optimise the structural parameters of the working parts of agricultural machines, including harvesting machines, the mechanical properties of the culture harvested must be known. The purpose of this article is to determine the mechanical properties of the blueberry plant’s stem; more precisely the tensile strength and consequent elastic modulus E. In order to achieve this goal, the measuring instrument Instron 5969L2610 was used and accompanying software BlueHill 3 was used for analysing the test results. The tested blueberry plant’s stems were collected from the blueberry plantation of the Farm Marjasoo. The diameters of the stems were measured, test units were prepared, tensile tests were performed, tensile strength was determined and the elastic modulus was obtained. Average value of the elastic modulus of the blueberry (Northblue) plant’s stem remained in the range of 1268.27–1297.73 MPa.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Johann Zwirner ◽  
Mario Scholze ◽  
John Neil Waddell ◽  
Benjamin Ondruschka ◽  
Niels Hammer

Abstract Realistic human head models are of great interest in traumatic brain injury research and in the forensic pathology courtroom and teaching. Due to a lack of biomechanical data, the human dura mater is underrepresented in head models. This study provides tensile data of 73 fresh human cranial dura mater samples retrieved from an area between the anterior middle and the posterior middle meningeal artery. Tissues were adapted to their native water content using the osmotic stress technique. Tensile tests were conducted under quasi-static uniaxial testing conditions with simultaneous digital image correlation. Human temporal dura mater is mechanically highly variable with regards to its elastic modulus of 70 ± 44 MPa, tensile strength of 7 ± 4 MPa, and maximum strain of 11 ± 3 percent. Mechanical properties of the dura mater did not vary significantly between side nor sex and decreased with the age of the cadaver. Both elastic modulus and tensile strength appear to have constant mechanical parameters within the first 139 hours post mortem. The mechanical properties provided by this study can help to improve computational and physical human head models. These properties under quasi-static conditions do not require adjustments for side nor sex, whereas adjustments of tensile properties accompanied with normal aging may be of interest.


2011 ◽  
Vol 181-182 ◽  
pp. 349-354 ◽  
Author(s):  
Ya Nan Fu ◽  
Jun Zhao ◽  
Ya Li Li

By tensile tests on GFRP rebar after high temperature, the change regularity and influent factor are analyzed. The results show that: With the temperature increasing, vitrification, carbonization, decomposition at high temperature test section of the GFRP rebar are aggravating , and their mechanical properties are deteriorating. At the same time, the limited tensile strength and ultimate tensile elastic modulus decreased in different degree.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Budi Arifvianto ◽  
Yuris Bahadur Wirawan ◽  
Urip Agus Salim ◽  
Suyitno Suyitno ◽  
Muslim Mahardika

Purpose The purpose of this study is to investigate the influences of extruder temperatures and raster orientations on the mechanical properties of polylactic-acid (PLA) material processed by using fused filament fabrication (FFF). Design/methodology/approach In this research, the PLA specimens were first printed with nozzle or extruder temperatures of 205°C, 215°C and 225°C and then evaluated in terms of their physical, chemical and mechanical properties. An appropriate extruder temperature was then selected based on this experiment and used for the printing of the other PLA specimens having various raster orientations. A series of tensile tests were carried out again to investigate the influence of raster orientations on the tensile strength, tensile strain and elastic modulus of those FFF-processed PLA materials. In the end, the one-way ANOVA was applied for the statistical analysis and the Mohr’s circle was established to aid in the analysis of the data obtained in this experiment. Findings The result of this study shows that the chemistry, porosity, degree of crystallinity and mechanical properties (tensile strength, strain and elastic modulus) of the PLA material printed with a raster angle of 0° were all insensitive to the increasing extruder temperature from 205°C to 225°C. Meanwhile, the mechanical properties of such printed PLA material were obviously influenced by its raster orientation. In this case, a PLA material with a raster orientation parallel to its loading axis, i.e. those with a raster angle of θ = 0°, was found as the strongest material. Meanwhile, the raster configuration-oriented perpendicular to its loading axis or θ = 90° yielded the weakest PLA material. The results of the tensile tests for the PLA material printed with bidirectional raster orientations, i.e. θ = 0°/90° and 45°/−45° demonstrated their strengths with values falling between those of the materials having unidirectional raster θ = 0° and 90°. Furthermore, the result of the analysis by using a well-known Mohr’s circle confirmed the experimental tensile strengths and the failure mechanisms of the PLA material that had been printed with various raster orientations. Originality/value This study presented consistent results on the chemistry, physical, degree of crystallinity and mechanical properties of the FFF-processed PLA in responding to the increasing extruder temperature from 205°C to 225°C applied during the printing process. Unlike the results of the previous studies, all these properties were also found to be insensitive to the increase of extruder temperature. Also, the result of this research demonstrates the usability of Mohr’s circle in the analysis of stresses working on an FFF-processed PLA material in responding to the changes in raster orientation printed in this material.


2012 ◽  
Vol 174-177 ◽  
pp. 830-833 ◽  
Author(s):  
Bao Rong Huo ◽  
Xiang Dong Zhang

The testing rule of mechanical properties of material can be established and the mechanical performance can be found by studying the basic mechanical properties of BFRP bars. Using the opressive sleeve anchor developed by the researchers,tensile tests of BFRP bars are carried out according to the national standards of “GFRP bar tensile test methods”.The BFRP bar’s force-deformation curve is linear before the force-deformation relationship is destroyed,therefore,referring to steel wire or steel cable,the BFRP bar’s reliable strength is suggested to be approximately 80% of its ultimate tensile strength. The BFRP bar’s tensile elastic modulus is related to the content of basalt fiber.The tensile elastic modulus increases with the increase of the basalt fiber’s content and the content increases when the BFRP bar’s diameter becomes longer, so the tensile elastic modulus increases with the increase of its diameter. Compared with steel, the BFRP bar is obviously superior in the aspects of tensile strength, corrosion resistance ,etc,therefore to use the BFRP bar in reinforced concrete structures insead of steel is feasible.


Author(s):  
Aleksandra Towarek ◽  
Wojciech Jurczak ◽  
Joanna Zdunek ◽  
Mariusz Kulczyk ◽  
Jarosław Mizera

AbstractTwo model aluminium-magnesium alloys, containing 3 and 7.5 wt.% of Mg, were subjected to plastic deformation by means of hydrostatic extrusion (HE). Two degrees of deformation were imposed by two subsequent reductions of the diameter. Microstructural analysis and tensile tests of the materials in the initial state and after deformation were performed. For both materials, HE extrusion resulted in the deformation of the microstructure—formation of the un-equilibrium grain boundaries and partition of the grains. What is more, HE resulted in a significant increase of tensile strength and decrease of the elongation, mostly after the first degree of deformation.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5042
Author(s):  
Jaeyoung Kwon ◽  
Junhyeok Ock ◽  
Namkug Kim

3D printing technology has been extensively applied in the medical field, but the ability to replicate tissues that experience significant loads and undergo substantial deformation, such as the aorta, remains elusive. Therefore, this study proposed a method to imitate the mechanical characteristics of the aortic wall by 3D printing embedded patterns and combining two materials with different physical properties. First, we determined the mechanical properties of the selected base materials (Agilus and Dragonskin 30) and pattern materials (VeroCyan and TPU 95A) and performed tensile testing. Three patterns were designed and embedded in printed Agilus–VeroCyan and Dragonskin 30–TPU 95A specimens. Tensile tests were then performed on the printed specimens, and the stress-strain curves were evaluated. The samples with one of the two tested orthotropic patterns exceeded the tensile strength and strain properties of a human aorta. Specifically, a tensile strength of 2.15 ± 0.15 MPa and strain at breaking of 3.18 ± 0.05 mm/mm were measured in the study; the human aorta is considered to have tensile strength and strain at breaking of 2.0–3.0 MPa and 2.0–2.3 mm/mm, respectively. These findings indicate the potential for developing more representative aortic phantoms based on the approach in this study.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 548 ◽  
Author(s):  
Leonid Agureev ◽  
Valeriy Kostikov ◽  
Zhanna Eremeeva ◽  
Svetlana Savushkina ◽  
Boris Ivanov ◽  
...  

The article presents the study of alumina nanoparticles’ (nanofibers) concentration effect on the strength properties of pure nickel. The samples were obtained by spark plasma sintering of previously mechanically activated metal powders. The dependence of the grain size and the relative density of compacts on the number of nanofibers was investigated. It was found that with an increase in the concentration of nanofibers, the average size of the matrix particles decreased. The effects of the nanoparticle concentration (0.01–0.1 wt.%) on the elastic modulus and tensile strength were determined for materials at 25 °C, 400 °C, and 750 °C. It was shown that with an increase in the concentration of nanofibers, a 10–40% increase in the elastic modulus and ultimate tensile strength occurred. A comparison of the mechanical properties of nickel in a wide range of temperatures, obtained in this work with materials made by various technologies, is carried out. A description of nanofibers’ mechanisms of influence on the structure and mechanical properties of nickel is given. The possible impact of impurity phases on the properties of nickel is estimated. The tendency of changes in the mechanical properties of nickel, depending on the concentration of nanofibers, is shown.


Sign in / Sign up

Export Citation Format

Share Document