Gravimetric Profile of Hydrocarbon Degrading Bacterial and Fungal Isolates from Contaminated Soil Samples in Ado-Ekiti, Nigeria

Author(s):  
Olayinka O. Idris ◽  
◽  
Olayinka T. Ogunmefun ◽  
Cinderella N. Tuesimi

One of the biological compounds limiting soil water retention capacity is oil when present due to its hydro-nature. However, some microorganisms exhibit the capacity to degrade oil as a source of carbon, whereby the soil quality is retained and enhanced. Hence, the gravimetric profile of hydrocarbon degrading bacteria and fungi isolated from oil contaminated soil samples was investigated. Soil samples were collected from surface and 10m depth from six different mechanic workshops and generator sites. The pour plate technique was used to isolate the microorganisms. All pure isolates were sub-cultured using Bushnell Haas agar and the isolated bacteria were identified by their morphological and biochemical characteristics. The soil samples pH range was 4.3 - 6.4. Bacteria isolated included Pseudomonas spp., Staphylococcus spp., Microccocus spp., Acinetobacter spp., and Bacillus spp. The fungi isolated included Aspergillus spp., Rhizopus spp., Candida spp., Trichoderma spp. and Penicillium spp. Degradation of kerosene, diesel, crude oil, engine oil, and spent engine oil was allowed using Acinetobacter baumanni, P. aeruginosa, B. subtilis, and S. aureus. Gravimetric analyses were used to determine the percentage of petroleum hydrocarbon degraded by bacterial isolates. The highest percentage of degradation was between P. aeruginosa and B. subtilis. Pseudomonas aeruginosa degraded 97.4% diesel, 88.2% kerosene, 71.3% crude oil, 80.7% engine oil and 78.2% spent engine oil; while Bacillus subtilis degraded 71% diesel, 97% kerosene, 89.6% crude oil, 87% engine oil and 72.6% spent engine oil. This study revealed that bacterial and fungal isolates from oil contaminated soils exhibited the potentials to degrade oil and bioremediation using these microorganisms was possible.

2018 ◽  
Author(s):  
A. A. Ayandele

AbstractThe potential of six microorganisms (Pseudomonas aeruginosa, Micrococcus sp, Flavobacterium sp, Rhizopus sp, Penicillium sp and Fusarium sp) isolated from hydrocarbon contaminated site were evaluated for their biodegradation ability. The soil samples were contaminated with 5% (w/v) of spent engine oil and the rate of biodegradation of the oil was studied for a period of 10weeks under greenhouse experiment. The total heterotrophic bacteria count (THBC), total hydrocarbon degrading bacteria count (THDBC), physicochemical and heavy metals properties of the soil samples and Total Petroleum Hydrocarbon (TPH) were determined after treatment with test organisms. THBC and THDBC ranged from 0.175 to 0.280 CFUg-1 and 0.47 CFUg-1 respectively for the control plot, while THBC is ranging from 0.197 to 0.275 CFUg-1 and THDBC was 0.180 to 0. 473 CFUg-1 for the contaminated plot. There was a slight increase in the pH value of the contaminated soil sample and the treated soil samples as the experimental weeks increased. The results obtained showed a significant decrease (at p ≤ 0.05) in the nutrients content of the soil samples. There was an increase from 1.09 in the control to 15.5% in the content of organic matter after contamination and from 1.88% to 26.8% in the % of organic matter too. There was a significant reduction (at p ≤ 0.05) in the concentration of Fe, Zn, Pb, Cd, Cu, Cr and Ni after 10 weeks of incubation with the tested organisms. Plant growth in the treated contaminated soil samples ranged from 32.6cm to 38.6cm, while that of the control 1 (Uncontaminated soil) was 51.2cm and 19.7cm high was observed in the Control 2 (contaminated untreated soil) after 22 days of the experiment. The TPH degradation (% loss) ranged from 79.7 to 89. 2% after 10 weeks of treatment. P. aeruginosa had the highest level of degradation (89.2%), while Micrococcus sp and Rhizopus sp had the least degradation at 79.9%.All the microorganisms used in this study had the abilities to remediating soil contaminated with spent engine oil and the remediated soil samples were able to support the growth of Zea mays at 5% (w/v) level of contamination.


2019 ◽  
Vol 7 (5) ◽  
pp. 13-22 ◽  
Author(s):  
Hilary Uguru ◽  
Akpokodje, O. I.

This study was carried out to investigate the effect of compost manure and organic soap on hydrocarbon degradation in petroleum products contaminated soil. 10 kg of top soil collected at a depth of 0-20 cm, air dried and sieved, were poured into plastic containers. The soil samples were was pounded with 1 L of spent engine oil, 1 L of kerosene, 1 L of petrol and 1 L of diesel daily for five days. The containers were placed under natural environmental conditions for three weeks to enable full acclimatization of the petroleum products with the soil. A completely randomized design comprising T1 (Polluted soil without treatment ‘control’); T2 (10 kg contaminated soil + 500 g organic soap); T3 (10 kg contaminated soil + 500 g compost manure); and T4 (10 kg contaminated soil + 500 g compost manure + 500 g organic soap) was used for this study. Some physical characteristics (soil porosity and specific gravity) and Total Hydrocarbon Content (THC) of the soil samples were tested for, after the full acclimatization of the soil samples, and at the end of the 10 week experimental period, in accordance with standard methods. Results of the study showed that addition of the compost manure and organic soap the contaminated soil samples significantly (p ≤0.05) degraded the THC, and improved the soil physical characteristics. The result showed that the combination of compost manure and organic soap gave the best remediation result (from 957.21 mg/kg to 154.36 mg/kg), followed by organic soap (from 957.21mg/kg to 203.61 mg/kg), and then compost manure (from 957.21 mg/kg to 262.03 mg/kg). At the end of the experimental period, vegetative growth was observed in the treated soil samples; whereas,  in the control soil samples vegetative growth was absent. Results obtained from this study have shown that amending petroleum products contaminated soils with compost manure and organic soap will enhance remediation of petroleum products contaminated sites.


2009 ◽  
Vol 62-64 ◽  
pp. 451-455 ◽  
Author(s):  
F.A. Aisien ◽  
J.C. Chiadikobi ◽  
E.T. Aisien

This paper considered the toxicity assessment of some crude oil contaminated soils in Niger Delta areas. The soil samples were collected from different horizontal distances, vertical depths and contaminated soil of different ages. The heavy metals in the contaminated soils were digested and extracted using di-acid digested and DTPA extraction methods respectively. The physiochemical parameters (moisture content, pH, N, P and heavy metals (Ni, Pb and Cd) were analysed with APHA method. The heavy metals concentration was determined using atomic absorption spectrophotometer (AAS). The results show that the metals concentration decreased with the age of the contaminated soil and with increased vertical depths. However, the metals concentrations were almost constant at different horizontal distances. Similar trend was observed for the moisture content, pH, N, P and K.


2020 ◽  
Vol 8 (1) ◽  
pp. 91-104
Author(s):  
Elizabeth Adeyinka AJIBOYE ◽  
Hikmat Omolara SULAYMAN ◽  
Abdullahi Taiwo AJAO

The research aimed to investigate the bioremediation of spent engine oil on selected contaminated soils within Ilorin metropolis. To achieve this, soil samples were collected from three (3) mechanic workshops along Taiwo axis within the metropolis. The soil samples were then subjected to bioremediation using the land-farming approach. The physicochemical parameters of the soil samples before and after bioremediation were analyzed using standard methods. Bacteria were isolated using standard procedures and identified using biochemical tests and molecular methods. Results for the physicochemical parameters of the soil samples before bioremediation include particle size (all sandy in nature); pH (6.00 ± 0.14 - 6.20 ± 0.14); Organic carbon (14.65 ± 3.20 - 17.54 ± 1.87), Organic matter (33.50 ± 0.85 - 43.45 ± 9.12) and heavy metals (ND - 11.74 ± 0.07). Values after bioremediation for pH, organic carbon, organic matter and heavy metals were 8.25 ± 0.07 - 8.90 ± 0.14, 13.07 ± 0.05 - 13.25 ± 0.84, 37.25 ± 1.06 - 44.80 ± 1.13, ND - 9.40 ± 0.04 respectively. Values for bacterial count before and after bioremediation of the soil samples were 8.00  1.41 - 67.50 ± 2.12 x 105 CFU/mL and 6.50 ± 2.12 - 164.00 ± 11.31 x 105 CFU/mL respectively. Bacterial isolates were identified as Pseudomonas sp., Enterobacter sp., Acinetobacter sp., and Bacillus sp. while the hydrocarbon-utilizing bacteria were identified as Thalassospira mesophila strain JCM 18969; Pseudomonas fluorescens F113; Siccibacter turicensis LMG 23730; Pseudomonas Zeshuii strain KACC 15471; Pseudomonas stutzeri strain CGMCC 1.1803 and Marinobacter hydrocarbonoclasticus strain ATCC 49840. In conclusion, the bacteria isolates effectively bioremediated the spent engine oil contaminated soils with a reduction of hydrocarbon pollutants.


2020 ◽  
Vol 857 ◽  
pp. 234-242
Author(s):  
Mahmoud S. Abdul Kareem ◽  
Mustafa A. Kadhem ◽  
Halah K.T. AL-Nealy ◽  
Lina H.A. AL-Midhatee

This study focuses on studying the impacts of residues oil on the geotechnical properties of soil and the performance of raft footing rested on oil contaminated soil and subjected to vertical loads. The contaminant used in the present study is residues oil, which is by product disposed of diesel engine oils. The soil samples are contaminated artificially by soaking with two percentage of disposed engine oil of contaminant consist of (disposed engine oil and gasoline) of 20% weight of dried of intact soil samples to obtain different concentrations of contaminant absorbed by soil samples for 30 days to complete the saturation. The mechanical model manufactured to investigate the behavior of raft footing under vertical static loading rested on intact and contaminated soils. The obtained results detected contaminant content have notable impacts on the physical soil characteristics such as the fine particles, specific gravity, plasticity index, and maximum dry unit weight decreased with the increase of contaminant content than that of intact soil. The mechanical soil properties of soil indicated the increase of the compressibility of soil with increase of residues oil percentage, but the soil strength and stiffness are decreased notably. In addition, the total and permanent settlement of raft footing constructed in contaminated soil samples increased by (27-43) % and by (41-58) % than that of an intact soil sample, respectively.


2014 ◽  
Vol 3 (2) ◽  
pp. 63-75 ◽  
Author(s):  
HY Ismail ◽  
UJJ Ijah ◽  
ML Riskuwa ◽  
II Allamin

Biodegradation of spent engine oil (SEO) by bacteria isolated from the rhizosphere of Cajan cajan and Lablab purpureus was investigated. It was with a view to determining most efficient bacterial species that could degrade SEO in phytoremediation studies. Hydrocarbon degrading bacteria were isolated and identified by enrichment culture technique using oil agar supplemented with 0.1% v/v SEO. Total heterotrophic and oil utilizing bacterial count showed the occurrence of large number of bacteria predominantly in the rhizosphere soil, ranging between 54×108 - 144×108 CFU/g and 4×108- 96×108 CFU/g respectively. Percentage of oil utilizing bacteria ranged between 0% (uncontaminated non rhizosphere soil) to 76% (contaminated rhizosphere). Turbidimetrically, five bacterial species namely Pseudomonas putrefacience CR33, Klebsiella pneumonia CR23, Pseudomonas alcaligenes LR14, Klebsiella aerogenes CR21, and Bacillus coagulans CR31 were shown to grow maximally and degraded the oil at the rate of 68%, 62%, 59%, 58%and 45% respectively. Chromatographic analysis using GC-MS showed the presence of lower molecular weight hydrocarbons in the residual oil (indicating degradation) after 21 days, whereas the undegraded oil (control) had higher molecular weight hydrocarbons after the same period. The species isolated were shown to have high ability of SEO biodegradation and therefore could be important tools in ameliorating SEO contaminated soil. DOI: http://dx.doi.org/10.3126/ije.v3i2.10515 International Journal of the Environment Vol.3(2) 2014: 63-75


Author(s):  
A. A. Ibiene ◽  
O. Aleruchi ◽  
L.C. Nnodim ◽  
R. U. Ihunwo

Studies were carried out to investigate the bioremediation potential of pig dung in a soil contaminated with spent engine oil. Soil samples were obtained from the Ofrima complex, University of Port Harcourt. The soil samples were contaminated with various concentrations (50 ml and 100 ml) of spent engine oil and allowed for 21 days for proper exposure, mimicking natural spill. This was followed by the addition of the pig dung. The experimental setup was labeled sample A (1 kg soil + 100 g pig dung + 50 ml spent engine oil) and sample B (1 kg soil + 100 g pig dung + 100 ml spent engine oil). The physicochemical parameters and the microbiological analysis were done using standard methods. The total petroleum hydrocarbon was analyzed using gas chromatographic methods. Analyses were carried out at 14 days intervals for 28 days. The physicochemical parameter results showed a reduction in pH values in the contaminated soil samples, ranging from 6.21 - 6.65 in sample A and 6.57 - 6.87 in sample B. Temperature values were constant at 230C from day 1 to day 14 in sample A and increased at day 28 to 24 0C, also for sample B, the temperature was constant at 230C from day 1 to day14 and increased at day 28 to 26 0C. The amount of heavy metal (Lead) content decreased from 4.3645 - 1.93676 (mg/kg) and 6.18361 - 3.89654 (mg/kg) for samples A and B, respectively. There was also a significant reduction in the amount of Total Petroleum Hydrocarbon, from 16631.86 - 3280.83 mg/kg for sample A and 18464.73 - 6784.60 mg/kg for sample B. The THB counts for samples A and B ranged from 7.73 - 7.91 and 7.05-8.20 (Log cfu/g), respectively. The fungal counts ranged from 3.99–4.58 and 5.12 - 7.93 (Log cfu/g) for samples A and B respectively. HUB counts ranged from 4.52–5.09 and 4.93- 5.55 (Log cfu/g) for samples A and B, respectively. The HUF counts ranged from 4.12 - 5.49 and 4.13 - 4.70 (Log cfu/g) for samples A and B, respectively. The results clearly showed that microorganisms capable of utilizing total petroleum hydrocarbon were present, also the pig dung showed both bio-stimulation and bio-augmentation tendency to attract high microbial load which supported the bioremediation of the spent engine oil contaminated soil.


Author(s):  
B. M. Popoola ◽  
A. A. Olanbiwonninu

Biodegradation of hydrocarbons by microorganisms represents one of the primary mechanisms by which petroleum and other hydrogen pollutants are eliminated from the environment. This work was carried out on the effect of microorganisms on the biotreatment of oil in crude oil contaminated soil. Microorganisms were isolated from two experimental soil samples contaminated with Bonny Crude and normal uncontaminated soil as a control over a period of seven months. The microbial as well as the physico-chemical parameters of the soil samples were all analyzed using standard methods. Changes in total petroleum hydrocarbon level were measured appropriately. Treatments used were the microbial isolates. Forty-four microorganisms were isolated from the contaminated soils and identified as species of Pseudomonas (7), Flavobacterium (6), Bacillus (8), Proteus (4), Klebsiella (1), Pencillium (5), Aspergillus (7), Fusarium (3), Trichypton (2) and Neurospora (1). Ten of the forty-four isolates had ability to degrade crude oil in the laboratory. On contamination a value of 1.0X105 cfu/g in microbial counts were obtained followed by a subsequent increase in population levels after a period of 2months with a value of 1.0X106 cfu/g. Oil application to the soil resulted in an increase in total petroleum hydrocarbon from 0.31 ppm to 5.53 ppm; organic matter from 0.41% to 7.34%; available phosphorus from 1.75 ppm to 2.84 ppm. The treatment measures all showed progressive decrease in oil concentration in the soil. Mixture of bacterial and fungal isolates as a treatment measure proved to be more favourable above all others, it brought the concentration from 5.53 ppm to 0.31 ppm after a period of 5 weeks of treatment, which is same value with the normal soil (uncontaminated). Species of Pseudomonas, Bacillus, Flavobacterium, Proteus, Klebsiella, Penicillium, Aspergillus, Fusarium, Trichyphyton and Neurospora had potential for the degradation of bonny crude oil. They could therefore be employed in environmental cleanup of petroleum spill site.


2018 ◽  
Vol 12 (1) ◽  
pp. 115-123
Author(s):  
Amel Hussein ◽  
Saad Khudhair

The accumulation of hydrocarbon waste, such as used engine oils in environments, has many impacts on humans and other organisms, therefore many researches were achieved to degrade or remove or consume these pollutants. The aim of the current study is to get a local bacterial isolates has high ability to degrade the spent engine oil as a single or mixed culture. Five soil samples contaminated with spent engine oil were collected from mechanic workshops in Baghdad city to isolate degrading bacteria using Bushnell Hans medium (BHM), pH 7 with 5% of used engine oil. While the growth patterns and gravimetric analysis was used to reveal the ability of these isolates to degrade spent engine oil in liquid BHM medium. The best three isolates A4, B6 and D5 were identified and the optimal temperature and pH for biodegradation of spending engine oil were studied. Also, the consortium culture of three isolates was tested their ability to utilize spent engine oil under the same conditions for single isolate. Twenty five bacterial isolates were obtained from contaminated soil samples and three isolates appeared a maximum degradation rate 74.6, 70.2 and 78.5% respectively. The results from identification tests were showing these isolates belong to Bacillus sp., Acinetobacter sp. and Pseudomonas sp., respectively. The studied three isolates gave the best degradation when incubated at 30°C in BHM medium pH 7. While other results were indicated that consortium cultures are more effective 90.2% than all experiments that used single isolate.


2016 ◽  
pp. 27-38 ◽  
Author(s):  
Tolulope M. Obuotor ◽  
Abdulwasiu O. Sakariyau ◽  
Babatunde S. Bada

Physical and chemical methods of remediating contaminated soils are less environment-friendly compared to the biodegradation method. This study investigated the ability of selected organic wastes to enhance biodegradation of Spent Engine Oil (SEO) contaminated soil. One kilogram of uncontaminated soil was thoroughly mixed with 10% (w/v) SEO in seven treatments with two replicates. Spent Fruit Residues (SFR), Cassava Peel (CP) and a combination of Bean Husk and Chromolaena odorata(BHC) were added at 10% and20% (w/w), with an untreated control. Total Heterotrophic Bacterial Count (THBC), Total Fungal Count (TFC), Total Hydro-carbon Degrading Bacterial Count (THDBC) and Total Hydrocarbon Degrading Fungal Count (THDFC) of the contaminated and uncontaminated soils were determined using standard micro-biological methods. Isolates were screened for SEO utilization using 2,6-dichlorophenol indo-phenol indicator. Hydrocarbon contents of the soils were determined using Gas Chromatography-Mass Spectrometry (GC-MS). The data obtained were subjected to statistical analysis. The THBC ranged from 1.3x106to 2.9x106CFU g-1, TFC ranged from 5.4x104to 2.0x105CFUg-1, THDBC ranged from 0.5x103to 1.9x104CFUg-1while THDFC ranged from 2.0x103to 1.0x104CFUg-1. The isolated bacteria were Pseudomonas spp., Bacillus spp., Klebsiella spp., Proteus mirabilis, Burkholderia cepacia, Micrococcus luteus, Providencia rettgeri, Enterococcus faecalis, Streptococcus bovisand Enterobacter cloacaewhile the isolated fungi were Candida spp., Aspergillus niger, Saccharomyces cerevisae, Penicillium chrysogenumand Trichophyton sp. Pseudomonas aeruginosaand Aspergillus nigerutilized the oil better than other isolates with absorbance of 0.26 and 0.49 at 600 nm, respectively. The GC-MS revealed that SFR 20% (w/w) treatment had the highest percentage degradation of 70.5%. This study confirms that spent fruit residues can enhance biodegradation of spent engine oil contaminated soil.


Sign in / Sign up

Export Citation Format

Share Document