Colloidal processing and mechanical properties of silicon carbide with alumina

1997 ◽  
Vol 12 (11) ◽  
pp. 3146-3157 ◽  
Author(s):  
Yoshihiro Hirata ◽  
Kouji Hidaka ◽  
Hiroaki Matsumura ◽  
Yasuo Fukushige ◽  
Soichiro Sameshima

Submicrometer-sized SiC coated with SiO2 of 0.4–1.8 wt.% and α–Al2O3 powder of median size 0.2 μm were mixed in aqueous solutions in the pH range 3.0–10.0. The SiC/Al2O3 (4.3–6.9 wt. %) powders were consolidated by filtration through gypsum molds and hot-pressed at 1600°–2040 °C under a pressure of 39 MPa. These compacts were densified to near the theoretical density at 1700°–1800 °C. The sintering mechanisms are discussed based on the analysis of shrinkage curves of SiC/Al2O3 compacts during hot-pressing. The equiaxed SiC grains grew with low aspect ratios below 1800 °C and changed to plate-like grains at 1900 °C. The fracture toughness of SiC as a function of average grain size reached a maximum of 5 Mpa · m0.5 at 2.5 μm grains of low aspect ratios of 1–2. The flexural strengths at room temperature were 230–430 MPa in the SiC above 98% of the theoretical density and showed a similar grain size dependence.

2015 ◽  
Vol 736 ◽  
pp. 19-23
Author(s):  
Taek Kyun Jung ◽  
Hyo Soo Lee ◽  
Hyouk Chon Kwon

This study was carried out to investigate the effects of grain size on mechanical properties in Cu-Sn foil with a thickness of 30 um. The grain size was varied from approximately 7 um to 50 um using heat treatment at 773 K for 2 h to 24 h in a vacuum atmosphere. Tensile test was carried out at room temperature with strain rate of 1mm/min. Typical yield drop phenomenon was observed. Mechanical properties were found to be strongly affected by microstructural features including grain size. The yield strength and tensile strength gradually decreased with increasing the grain size. The strain to fracture also decreased by grain growth. These results could be explained by not only the grain size dependence of yield strength but also the ratio of thickness to grain size dependence of yield strength.


2013 ◽  
Vol 750-752 ◽  
pp. 760-764 ◽  
Author(s):  
Bao Yi Yu ◽  
Qian Qian Luo ◽  
Yang Li ◽  
Yu Juan Wu ◽  
Run Xia Li

In order to improve plastic property of AZ31 alloy tubes at room temperature and expand application of cold rolling process in magnesium (Mg) alloys, solution treatment (T4) and cryogenic treatment of AZ31 tubes obtained by drawing were investigated in this work. The results indicate that T4 can improve the microstructure of the alloy, refine grains and eliminate twins. The optimized T4 parameter is 300 °C for 8 h, in which the average grain size of 12 μm can be obtained and elongation reaches to Max of 16.1% and tensile strength reaches to 242 MPa. Moreover, tensile strength was decreased to 211 MPa, while, elongation was improved to 25.4% by T4+cryogenic treatment at-196 °C.


Crystals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 586 ◽  
Author(s):  
Shi ◽  
Li ◽  
Hu ◽  
Tan ◽  
Zhang ◽  
...  

A fine-grained Mg-2Y-0.6Nd-0.6Zr alloy was processed by bar-rolling and equal-channel angular pressing (ECAP). The effect of ECAP on the microstructure and mechanical properties of rolled Mg-2Y-0.6Nd-0.6Zr alloy was investigated by optical microscopy, scanning electron microscopy, electron backscattered diffraction and a room temperature tensile test. The results show that the Mg-2Y-0.6Nd-0.6Zr alloy obtained high strength and poor plasticity after rolling. As the number of ECAP passes increased, the grain size of the alloy gradually reduced and the texture of the basal plane gradually weakened. The ultimate tensile strength of the alloy first increased and then decreased, the yield strength gradually decreased, and the plasticity continuously increased. After four passes of ECAP, the average grain size decreased from 11.2 µm to 1.87 µm, and the alloy obtained excellent comprehensive mechanical properties. Its strength was slightly reduced compared to the as-rolled alloy, but the plasticity was greatly increased.


2007 ◽  
Vol 561-565 ◽  
pp. 941-944
Author(s):  
Yong Bing Li ◽  
Hua Cui ◽  
Jin Feng Huang ◽  
Yuan Hua Cai ◽  
Zi Han Wang ◽  
...  

In this study, cylindrical billets of Mg-3Al-1Zn (AZ31) alloy have been synthesized by spray forming technique. The alloy billets were hot-extruded into rods with proper processing parameters. The microstructures and mechanical properties of alloys were investigated. The results indicated that spray formed AZ31 alloys have a homogeneous and equiaxial grains with average grain size of 20μm. The further grain refinement with an average grain size of 5μm was attributed to the continuous dynamic recrystallization during the extrusion processing. The room temperature mechanical properties of the extruded rods are remarkably higher than those of as-cast AZ31 alloy. The average tensile ultimate and yield strength of the alloy are 321MPa and 237MPa, respectively, with an elongation of 15.2%.


2013 ◽  
Vol 58 (1) ◽  
pp. 95-98 ◽  
Author(s):  
M. Zielinska ◽  
J. Sieniawski

Superalloy René 77 is very wide used for turbine blades, turbine disks of aircraft engines which work up to 1050°C. These elements are generally produced by the investment casting method. Turbine blades produced by conventional precision casting methods have coarse and inhomogeneous grain structure. Such a material often does not fulfil basic requirements, which concern mechanical properties for the stuff used in aeronautical engineering. The incorporation of controlled grain size improved mechanical properties. This control of grain size in the casting operation was accomplished by the control of processing parameters such as casting temperature, mould preheating temperature, and the use of grain nucleates in the face of the mould. For nickel and cobalt based superalloys, it was found that cobalt aluminate (CoAl2O4) has the best nucleating effect. The objective of this work was to determine the influence of the inoculant’s content (cobalt aluminate) in the surface layer of the ceramic mould on the microstructure and mechanical properties at high temperature of nickel based superalloy René 77. For this purpose, the ceramic moulds were made with different concentration of cobalt aluminate in the primary slurry was from 0 to 10% mass. in zirconium flour. Stepped and cylindrical samples were casted for microstructure and mechanical examinations. The average grain size of the matrix ( phase), was determined on the stepped samples. The influence of surface modification on the grain size of up to section thickness was considered. The microstructure investigations with the use of light microscopy and scanning electron microscopy (SEM) enable to examine the influence of the surface modification on the morphology of ’ phase and carbides precipitations. Verification of the influence of CoAl2O4 on the mechanical properties of castings were investigated on the basis of results obtained form creep tests.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110294
Author(s):  
Khaled Abd El-Aziz ◽  
Emad M Ahmed ◽  
Abdulaziz H Alghtani ◽  
Bassem F Felemban ◽  
Hafiz T Ali ◽  
...  

Aluminum alloys are the most essential part of all shaped castings manufactured, mainly in the automotive, food industry, and structural applications. There is little consensus as to the precise relationship between grain size after grain refinement and corrosion resistance; conflicting conclusions have been published showing that reduced grain size can decrease or increase corrosion resistance. The effect of Al–5Ti–1B grain refiner (GR alloy) with different percentages on the mechanical properties and corrosion behavior of Aluminum-magnesium-silicon alloy (Al–Mg–Si) was studied. The average grain size is determined according to the E112ASTM standard. The compressive test specimens were made as per ASTM: E8/E8M-16 standard to get their compressive properties. The bulk hardness using Vickers hardness testing machine at a load of 50 g. Electrochemical corrosion tests were carried out in 3.5 % NaCl solution using Autolab Potentiostat/Galvanostat (PGSTAT 30).The grain size of the Al–Mg–Si alloy was reduced from 82 to 46 µm by the addition of GR alloy. The morphology of α-Al dendrites changes from coarse dendritic structure to fine equiaxed grains due to the addition of GR alloy and segregation of Ti, which controls the growth of primary α-Al. In addition, the mechanical properties of the Al–Mg–Si alloy were improved by GR alloy addition. GR alloy addition to Al–Mg–Si alloy produced fine-grained structure and better hardness and compressive strength. The addition of GR alloy did not reveal any marked improvements in the corrosion properties of Al–Mg–Si alloy.


2020 ◽  
Vol 17 (6) ◽  
pp. 831-836
Author(s):  
M. Vykunta Rao ◽  
Srinivasa Rao P. ◽  
B. Surendra Babu

Purpose Vibratory weld conditioning parameters have a great influence on the improvement of mechanical properties of weld connections. The purpose of this paper is to understand the influence of vibratory weld conditioning on the mechanical and microstructural characterization of aluminum 5052 alloy weldments. An attempt is made to understand the effect of the vibratory tungsten inert gas (TIG) welding process parameters on the hardness, ultimate tensile strength and microstructure of Al 5052-H32 alloy weldments. Design/methodology/approach Aluminum 5052 H32 specimens are welded at different combinations of vibromotor voltage inputs and time of vibrations. Voltage input is varied from 50 to 230 V at an interval of 10 V. At each voltage input to the vibromotor, there are three levels of time of vibration, i.e. 80, 90 and 100 s. The vibratory TIG-welded specimens are tested for their mechanical and microstructural properties. Findings The results indicate that the mechanical properties of aluminum alloy weld connections improved by increasing voltage input up to 160 V. Also, it has been observed that by increasing vibromotor voltage input beyond 160 V, mechanical properties were reduced significantly. It is also found that vibration time has less influence on the mechanical properties of weld connections. Improvement in hardness and ultimate tensile strength of vibratory welded joints is 16 and 14%, respectively, when compared without vibration, i.e. normal weld conditions. Average grain size is measured as per ASTM E 112–96. Average grain size is in the case of 0, 120, 160 and 230 is 20.709, 17.99, 16.57 and 20.8086 µm, respectively. Originality/value Novel vibratory TIG welded joints are prepared. Mechanical and micro-structural properties are tested.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 607
Author(s):  
A. I. Alateyah ◽  
Mohamed M. Z. Ahmed ◽  
Yasser Zedan ◽  
H. Abd El-Hafez ◽  
Majed O. Alawad ◽  
...  

The current study presents a detailed investigation for the equal channel angular pressing of pure copper through two regimes. The first was equal channel angular pressing (ECAP) processing at room temperature and the second was ECAP processing at 200 °C for up to 4-passes of route Bc. The grain structure and texture was investigated using electron back scattering diffraction (EBSD) across the whole sample cross-section and also the hardness and the tensile properties. The microstructure obtained after 1-pass at room temperature revealed finer equiaxed grains of about 3.89 µm down to submicrons with a high density of twin compared to the starting material. Additionally, a notable increase in the low angle grain boundaries (LAGBs) density was observed. This microstructure was found to be homogenous through the sample cross section. Further straining up to 2-passes showed a significant reduction of the average grain size to 2.97 µm with observable heterogeneous distribution of grains size. On the other hand, increasing the strain up to 4-passes enhanced the homogeneity of grain size distribution. The texture after 4-passes resembled the simple shear texture with about 7 times random. Conducting the ECAP processing at 200 °C resulted in a severely deformed microstructure with the highest fraction of submicron grains and high density of substructures was also observed. ECAP processing through 4-passes at room temperature experienced a significant increase in both hardness and tensile strength up to 180% and 124%, respectively.


2012 ◽  
Vol 468-471 ◽  
pp. 2124-2127 ◽  
Author(s):  
Shao Feng Zeng ◽  
Kai Huai Yang ◽  
Wen Zhe Chen

Equal channel angular pressing (ECAP) was applied to a commercial AZ61 magnesium alloy for up to 8 passes at temperatures as low as 473K. Microstructures and mechanical properties of as-received and ECAP deformed samples were investigated. The microstructure was initially not uniform with a “bimodal” grain size distribution but became increasingly homogeneous with further ECAP passes and the average grain size was considerably reduced from over 26 μm to below 5 μm. The ultimate tensile strength (UTS) decreases clearly after one pass, but increases significantly up to two passes, and then continuously slowly decreases up to six passes, and again increases slightly up to eight passes. In contrast, the uniform elongation increased significantly up to 3 passes, followed by considerable decrease up to 8 passes. These observations may be attributed to combined effects of grain refinement and texture development.


2010 ◽  
Vol 638-642 ◽  
pp. 2389-2394 ◽  
Author(s):  
Masahide Gotoh ◽  
Katsuhiro Seki ◽  
M. Shozu ◽  
Hajime Hirose ◽  
Toshihiko Sasaki

The fine-grained rolling steels NFG600 and the conventional usual rolling steels SM490 were processed by sand paper polishing and mechanical grinding to compare the residual stress generated after processing. The average grain size of NFG600 and SM490 is 3 μm and 15μm respectively. Therefore improvement of mechanical properties for such fine-grained steels is expected, it is important to understand the residual stress state of new fine-grained materials with processing. In this study, multi axial stresses of two kinds of specimens after polishing and grinding were measured by three kinds of analysis methods including cos-ψ method. As a result, as for σ33, the stress of NFG was compression, though that of SM490 was tension.


Sign in / Sign up

Export Citation Format

Share Document