Mechanical properties of ion-implanted amorphous silicon

2004 ◽  
Vol 19 (1) ◽  
pp. 338-346 ◽  
Author(s):  
D.M. Follstaedt ◽  
J.A. Knapp ◽  
S.M. Myers

We used nanoindentation coupled with finite element modeling to determine the mechanical properties of amorphous Si layers formed by self-ion implantation of crystalline Si at approximately 100 K. When the effects of the harder substrate on the response of the layers to indentation were accounted for, the amorphous phase was found to have a Young’s modulus of 136 ± 9 GPa and a hardness of 10.9 ± 0.9 GPa, which were 19% and 10% lower than the corresponding values for crystalline Si. The hardness agrees well with the pressure known to induce a phase transition in amorphous Si to the denser β–Sn-type structure of Si. This transition controls the yielding of amorphous Si under compressive stress during indentation, just as it does in crystalline Si. After annealing 1 h at 500 °C to relax the amorphous structure, the corresponding values increase slightly to 146 ± 9 GPa and 11.6 ± 1.0 GPa. Because hardness and elastic modulus are only moderately reduced with respect to crystalline Si, amorphous Si may be a useful alternative material for components in Si-based microelectromechanical systems if other improved properties are needed, such as increased fracture toughness.

2021 ◽  
pp. 073168442199086
Author(s):  
Yunfei Qu ◽  
Dian Wang ◽  
Hongye Zhang

The double V-wing honeycomb can be applied in many fields because of its lower mass and higher performance. In this study, the volume, in-plane elastic modulus and unit cell area of the double V-wing honeycomb were analytically derived, which became parts of the theoretical basis of the novel equivalent method. Based on mass, plateau load, in-plane elastic modulus, compression strain and energy absorption of the double V-wing honeycomb, a novel equivalent method mapping relationship between the thickness–width ratio and the basic parameters was established. The various size factor of the equivalent honeycomb model was denoted as n and constructed by the explicit finite element analysis method. The mechanical properties and energy absorption performance for equivalent honeycombs were investigated and compared with hexagonal honeycombs under dynamic impact. Numerical results showed a well coincidence for each honeycomb under dynamic impact before 0.009 s. Honeycombs with the same thickness–width ratio had similar mechanical properties and energy absorption characteristics. The equivalent method was verified by theoretical analysis, finite element analysis and experimental testing. Equivalent honeycombs exceeded the initial honeycomb in performance efficiency. Improvement of performance and weight loss reached 173.9% and 13.3% to the initial honeycomb. The double V-wing honeycomb possessed stronger impact resistance and better load-bearing capacity than the hexagonal honeycomb under impact in this study. The equivalent method could be applied to select the optimum honeycomb based on requirements and improve the efficiency of the double V-wing honeycomb.


2011 ◽  
Vol 78 (4) ◽  
Author(s):  
Susan Mischinski ◽  
Ani Ural

Bone is similar to fiber-reinforced composite materials made up of distinct phases such as osteons (fiber), interstitial bone (matrix), and cement lines (matrix-fiber interface). Microstructural features including osteons and cement lines are considered to play an important role in determining the crack growth behavior in cortical bone. The aim of this study is to elucidate possible mechanisms that affect crack penetration into osteons or deflection into cement lines using fracture mechanics-based finite element modeling. Cohesive finite element simulations were performed on two-dimensional models of a single osteon surrounded by a cement line interface and interstitial bone to determine whether the crack propagated into osteons or deflected into cement lines. The simulations investigated the effect of (i) crack orientation with respect to the loading, (ii) fracture toughness and strength of the cement line, (iii) crack length, and (iv) elastic modulus and fracture properties of the osteon with respect to the interstitial bone. The results of the finite element simulations showed that low cement line strength facilitated crack deflection irrespective of the fracture toughness of the cement line. However, low cement line fracture toughness did not guarantee crack deflection if the cement line had high strength. Long cracks required lower cement line strength and fracture toughness to be deflected into cement lines compared with short cracks. The orientation of the crack affected the crack growth trajectory. Changing the fracture properties of the osteon influenced the crack propagation path whereas varying the elastic modulus of the osteon had almost no effect on crack trajectory. The findings of this study present a computational mechanics approach for evaluating microscale fracture mechanisms in bone and provide additional insight into the role of bone microstructure in controlling the microcrack growth trajectory.


2014 ◽  
Vol 616 ◽  
pp. 27-31 ◽  
Author(s):  
Tomohiro Kobayashi ◽  
Katsumi Yoshida ◽  
Toyohiko Yano

The CNT/B4C composite with Al2O3 additive was fabricated by hot-pressing following extrusion molding of a CNT/B4C paste, and mechanical properties of the obtained composite were investigated. Many CNTs in the composite aligned along the extrusion direction from SEM observation. 3-points bending strength of the composite was slightly lower than that of the monolithic B4C. Elastic modulus and Vickers hardness of the composite drastically decreased with CNT addition. Fracture toughness of the composite was higher than that of the monolithic B4C.


2020 ◽  
Vol 10 (13) ◽  
pp. 4435
Author(s):  
Qi Li ◽  
Guangchun Xiao ◽  
Zhaoqiang Chen ◽  
Runxin Guo ◽  
Mingdong Yi ◽  
...  

The Al2O3/Ti(C,N) ceramic material added micron ZrO2 whisker and nano coated CaF2@Al(OH)3 powder was fabricated. The micron ZrO2 whisker was for the toughening and reinforcing phase and the nano coated CaF2@Al(OH)3 powder was the lubricant. For obtaining a ceramic material with optimal comprehensive mechanical properties and friction properties, the influences of different compositions of the ZrO2 whisker and nano coated CaF2@Al(OH)3 powder on the microstructure and mechanical properties were analyzed, respectively. The result demonstrated that as the addition of the ZrO2 whisker was 6 vol% and the addition of the nano coated CaF2@Al(OH)3 powder was 10 vol%, the optimal self-lubricating ceramic material had optimal mechanical properties. The hardness of the ceramic material was 16.72 GPa, the flexural strength was 520 MPa and the fracture toughness reached 7.16 MPa·m1/2. The formation of the intragranular structure, whisker toughening and the phase transition of ZrO2 were the main mechanisms.


2002 ◽  
Vol 17 (1) ◽  
pp. 224-233 ◽  
Author(s):  
Jaap Den Toonder ◽  
Jürgen Malzbender ◽  
Gijsbertus De With ◽  
Ruud Balkenende

The reliability of coatings that are used in industrial applications critically depends on their mechanical properties. Nanoindentation and scratch testing are well-established techniques to measure some of these properties, namely the elastic modulus and hardness of coatings. In this paper, we investigate the possibility of also assessing the coating fracture toughness and the energy of adhesion between the coating and the substrate using indentation and scratch testing. Various existing and new methods are discussed, and they are illustrated by measurements on particle-filled sol-gel coatings on glass. All methods are based on the occurrence of cracking, and they are therefore only applicable to coating systems that act like brittle materials and exhibit cracking during indentation and scratching. The methods for determining the fracture toughness give comparable results, but the values still differ to within about 50%. The values of the adhesion energy obtained from different measurements are consistent, but it remains uncertain to which extent the obtained values are quantitatively correct. The results show that the methods used are promising, but more research is needed to obtain reliable quantitative results.


2018 ◽  
Vol 773 ◽  
pp. 3-9 ◽  
Author(s):  
Ilya A. Morozov ◽  
Anton Y. Beliaev ◽  
Roman I. Izyumov

Stiff coating on the phase-separated soft polyurethane substrate under the compression deformation is investigated by the finite element modeling (FEM). External strain leads to the wrinkling of layer surface, which is characterized by a set of wavelengths and amplitudes. The influence of the thickness and stiffness of the layer, elastic modulus of the substrate on the structural-mechanical properties of the deformed surface is studied. The results of the model are in good accordance with the experiment (plasma immersion ion impanation of nitrogen ions into the polyurethane substrate) and allowed to estimate the modulus of the coating and the deformation of the surface.


2013 ◽  
Vol 331 ◽  
pp. 456-460
Author(s):  
Min He ◽  
Duan Hu Shi ◽  
Feng Yang ◽  
Ning Zhang ◽  
Hua Feng Guo

An indentation approach with Berkovich indenter is proposed to determine fracture toughness for ductile materials. With decrease of effective elastic modulus, an approximate linear relationship between logarithmic plastic penetration depth and logarithmic effective elastic modulus, and a quadratic polynomial relationship between the plastic penetration depths and penetration loads are exhibited by indentation investigation with Berkovich indenter. The damage constructive equation of effective elastic modulus is proposed to determine the critical effective elastic modulus at the fracture point, which is the key problem to calculate the indentation energy to fracture. The critical plastic penetration depth is identified after the critical effective elastic modulus can be predicted by conventional mechanical properties. The fracture toughness is calculated according to the equation of penetration load, plastic penetration depth and the critical plastic penetration depth.


2013 ◽  
Vol 647 ◽  
pp. 683-687
Author(s):  
Mi Gong ◽  
Hong Chao Kou ◽  
Yu Song Yang ◽  
Guang Sheng Xu ◽  
Jin Shan Li ◽  
...  

The pore structures on mechanical properties of porous Ti were investigated by 3D finite element models. Calculated elastic modulus and yield strength suggested that square-pore models exhibit lower modulus and higher strength compared with another two kinds of shapes (circle and hexagonal). In addition, under the condition of medium porosity (58.96%), integrated property was found in square-pore model which elastic modulus was 26.97GPa, less than 1/3 of hexagonal-pore model; while the yield strength maintained 63.82MPa, doubled the figure of circle-pore model. Thus, models with square-pore structures show potential perspective as hard tissue replacements. Investigation on anisotropy of microstructure implies that the elastic modulus was affected more intensively than the yield strength.


2015 ◽  
Vol 27 (2) ◽  
pp. 90-94 ◽  
Author(s):  
C.S. Chew ◽  
R. Durairaj ◽  
A. S. M. A. Haseeb ◽  
B. Beake

Purpose – The purpose of this paper is to investigate the hardness and elastic modulus on interfacial phases formed between Sn-3.5Ag solder and Ni-18 at. % W alloy film by nanoindentation. It has been found that a ternary amorphous Sn-Ni-W layer formed below Ni3Sn4 IMC at the interface. In this study, mechanical properties of the IMC formed between SA solder and Ni-18 at. % W film after six times reflows were performed by nanoindentation. Design/methodology/approach – The characterization was carried at 25°C, and 100 indents were generated. The elastic modulus and hardness were investigated. Findings – The results showed that hardness of Ni3Sn4 IMC was higher than amorphous Sn-Ni-W phase. A slight bigger indent was observed on the Sn-Ni-W layer compared with that on the Ni3Sn4 IMC. Lower topographical height in the Sn-Ni-W layer indicated that the Sn-Ni-W phase was softer compared with the Ni3Sn4 IMC. The lower hardness and soft Sn-Ni-W phase is significantly related to the amorphous structure that formed through solid-state amorphization. Originality/value – There are no publications about the indentation on the interfacial between the Ni-W layer and the Sn-Ag solder.


2014 ◽  
Vol 136 (9) ◽  
Author(s):  
Ameet K. Aiyangar ◽  
Juan Vivanco ◽  
Anthony G. Au ◽  
Paul A. Anderson ◽  
Everett L. Smith ◽  
...  

Most studies investigating human lumbar vertebral trabecular bone (HVTB) mechanical property–density relationships have presented results for the superior–inferior (SI), or “on-axis” direction. Equivalent, directly measured data from mechanical testing in the transverse (TR) direction are sparse and quantitative computed tomography (QCT) density-dependent variations in the anisotropy ratio of HVTB have not been adequately studied. The current study aimed to investigate the dependence of HVTB mechanical anisotropy ratio on QCT density by quantifying the empirical relationships between QCT-based apparent density of HVTB and its apparent compressive mechanical properties— elastic modulus (Eapp), yield strength (σy), and yield strain (εy)—in the SI and TR directions for future clinical QCT-based continuum finite element modeling of HVTB. A total of 51 cylindrical cores (33 axial and 18 transverse) were extracted from four L1 human lumbar cadaveric vertebrae. Intact vertebrae were scanned in a clinical resolution computed tomography (CT) scanner prior to specimen extraction to obtain QCT density, ρCT. Additionally, physically measured apparent density, computed as ash weight over wet, bulk volume, ρapp, showed significant correlation with ρCT [ρCT = 1.0568 × ρapp, r = 0.86]. Specimens were compression tested at room temperature using the Zetos bone loading and bioreactor system. Apparent elastic modulus (Eapp) and yield strength (σy) were linearly related to the ρCT in the axial direction [ESI = 1493.8 × (ρCT), r = 0.77, p < 0.01; σY,SI = 6.9 × (ρCT) − 0.13, r = 0.76, p < 0.01] while a power-law relation provided the best fit in the transverse direction [ETR = 3349.1 × (ρCT)1.94, r = 0.89, p < 0.01; σY,TR = 18.81 × (ρCT)1.83, r = 0.83, p < 0.01]. No significant correlation was found between εy and ρCT in either direction. Eapp and σy in the axial direction were larger compared to the transverse direction by a factor of 3.2 and 2.3, respectively, on average. Furthermore, the degree of anisotropy decreased with increasing density. Comparatively, εy exhibited only a mild, but statistically significant anisotropy: transverse strains were larger than those in the axial direction by 30%, on average. Ability to map apparent mechanical properties in the transverse direction, in addition to the axial direction, from CT-based densitometric measures allows incorporation of transverse properties in finite element models based on clinical CT data, partially offsetting the inability of continuum models to accurately represent trabecular architectural variations.


Sign in / Sign up

Export Citation Format

Share Document