In-situ XRD and FIB microscopy studies of the dynamics of intermetallic phase formation in thin layer Cu/Sn films for low-temperature isothermal diffusion soldering

2011 ◽  
Vol 1318 ◽  
Author(s):  
Harald Etschmaier ◽  
Jiří Novák ◽  
Hannes Eder ◽  
Peter Hadley

ABSTRACTIn this contribution we report on the dynamics of the phase evolution in electrochemically deposited Sn thin films on copper coated substrates studied by in-situ X-ray diffraction (XRD) and Focused Ion Beam Microscopy (FIB). The data obtained is used to extract fundamental parameters such as the activation energy and the rate constant of the reaction. Results indicate that the formation of intermetallic phases in these thin layers, in which the grain size exceeds the layer thickness, is not limited by diffusion but rather by reaction kinetics.

2021 ◽  
Vol 28 (2) ◽  
pp. 550-565 ◽  
Author(s):  
David Yang ◽  
Nicholas W. Phillips ◽  
Kay Song ◽  
Ross J. Harder ◽  
Wonsuk Cha ◽  
...  

Focused ion beam (FIB) techniques are commonly used to machine, analyse and image materials at the micro- and nanoscale. However, FIB modifies the integrity of the sample by creating defects that cause lattice distortions. Methods have been developed to reduce FIB-induced strain; however, these protocols need to be evaluated for their effectiveness. Here, non-destructive Bragg coherent X-ray diffraction imaging is used to study the in situ annealing of FIB-milled gold microcrystals. Two non-collinear reflections are simultaneously measured for two different crystals during a single annealing cycle, demonstrating the ability to reliably track the location of multiple Bragg peaks during thermal annealing. The thermal lattice expansion of each crystal is used to calculate the local temperature. This is compared with thermocouple readings, which are shown to be substantially affected by thermal resistance. To evaluate the annealing process, each reflection is analysed by considering facet area evolution, cross-correlation maps of the displacement field and binarized morphology, and average strain plots. The crystal's strain and morphology evolve with increasing temperature, which is likely to be caused by the diffusion of gallium in gold below ∼280°C and the self-diffusion of gold above ∼280°C. The majority of FIB-induced strains are removed by 380–410°C, depending on which reflection is being considered. These observations highlight the importance of measuring multiple reflections to unambiguously interpret material behaviour.


2010 ◽  
Vol 24 (01n02) ◽  
pp. 1-9 ◽  
Author(s):  
ALEXANDER M. KORSUNSKY ◽  
EDOARDO BEMPORAD ◽  
MARCO SEBASTIANI ◽  
FELIX HOFMANN ◽  
SARAANSH DAVE

In the present paper we consider two representative methods for residual stress evaluation at the micro-scale: a (semi-)destructive method involving material removal and the measurement of strain relief; and a non-destructive X-ray diffraction technique involving the use of micro-focused synchrotron X-ray beam. A recently developed strain relief approach is described using a Focused Ion Beam (FIB) to create a circular trench of progressively increasing depth around a circular "island". Residual stress is evaluated by the comparison of the strain relief (measured by digital correlation of displacements or strains) with Finite Element simulations. The technique is illustrated for a thin TiN coating layer. The second approach uses focused synchrotron X-ray beams for white beam Laue diffraction. Demonstration experiments described involve in situ loading of commercially pure nickel foil. Procedures for validation and improvement of accuracy are discussed.


Author(s):  
Jian-Shing Luo ◽  
Hsiu Ting Lee

Abstract Several methods are used to invert samples 180 deg in a dual beam focused ion beam (FIB) system for backside milling by a specific in-situ lift out system or stages. However, most of those methods occupied too much time on FIB systems or requires a specific in-situ lift out system. This paper provides a novel transmission electron microscopy (TEM) sample preparation method to eliminate the curtain effect completely by a combination of backside milling and sample dicing with low cost and less FIB time. The procedures of the TEM pre-thinned sample preparation method using a combination of sample dicing and backside milling are described step by step. From the analysis results, the method has applied successfully to eliminate the curtain effect of dual beam FIB TEM samples for both random and site specific addresses.


Author(s):  
H. Lorenz ◽  
C. Engel

Abstract Due to the continuously decreasing cell size of DRAMs and concomitantly diminishing thickness of some insulating layers new failure mechanisms appear which until now had no significance for the cell function. For example high resistance leakage paths between closely spaced conductors can lead to retention problems. These are hard to detect by electrical characterization in a memory tester because the involved currents are in the range of pA. To analyze these failures we exploit the very sensitive passive voltage contrast of the Focused Ion Beam Microscope (FIB). The voltage contrast can further be enhanced by in-situ FIB preparations to obtain detailed information about the failure mechanism. The first part of this paper describes a method to detect a leakage path between a borderless contact on n-diffusion and an adjacent floating gate by passive voltage contrast achieved after FIB circuit modification. In the second part we will demonstrate the localization of a DRAM trench dielectric breakdown. In this case the FIB passive voltage contrast technique is not limited to the localization of the failing trench. We can also obtain the depth of the leakage path by selective insitu etching with XeF2 stopped immediately after a voltage contrast change.


Author(s):  
A. H. S. Iyer ◽  
M. H. Colliander

Abstract Background The trend in miniaturisation of structural components and continuous development of more advanced crystal plasticity models point towards the need for understanding cyclic properties of engineering materials at the microscale. Though the technology of focused ion beam milling enables the preparation of micron-sized samples for mechanical testing using nanoindenters, much of the focus has been on monotonic testing since the limited 1D motion of nanoindenters imposes restrictions on both sample preparation and cyclic testing. Objective/Methods In this work, we present an approach for cyclic microcantilever bending using a micromanipulator setup having three degrees of freedom, thereby offering more flexibility. Results The method has been demonstrated and validated by cyclic bending of Alloy 718plus microcantilevers prepared on a bulk specimen. The experiments reveal that this method is reliable and produces results that are comparable to a nanoindenter setup. Conclusions Due to the flexibility of the method, it offers straightforward testing of cantilevers manufactured at arbitrary position on bulk samples with fully reversed plastic deformation. Specific microstructural features, e.g., selected orientations, grain boundaries, phase boundaries etc., can therefore be easily targeted.


2014 ◽  
Vol 922 ◽  
pp. 264-269 ◽  
Author(s):  
Masahiro Inomoto ◽  
Norihiko L. Okamoto ◽  
Haruyuki Inui

The deformation behavior of the Γ (gamma) phase in the Fe-Zn system has been investigated via room-temperature compression tests of single-crystal micropillar specimens fabricated by the focused ion beam method. Trace analysis of slip lines indicates that {110} slip occurs for the specimens investigated in the present study. Although the slip direction has not been uniquely determined, the slip direction might be <111> in consideration of the crystal structure of the Γ phase (bcc).


MRS Advances ◽  
2018 ◽  
Vol 3 (11) ◽  
pp. 563-567 ◽  
Author(s):  
Quentin Altemose ◽  
Katrina Raichle ◽  
Brittani Schnable ◽  
Casey Schwarz ◽  
Myungkoo Kang ◽  
...  

ABSTRACTTransparent optical ZnO–Bi2O3–B2O3 (ZBB) glass-ceramics were created by the melt quenching technique. In this work, a melt of the glass containing stoichiometric ratios of Zn/Bi/B and As was studied. Differential scanning calorimeter (DSC) measurements was used to measure the thermal behavior. VIS/NIR transmission measurements were used to determine the transmission window. X-ray diffraction (XRD) was used to determine crystal phase. In this study, we explore new techniques and report a detailed study of in-situ XRD of the ZBB composition in order to correlate nucleation temperature, heat treatment temperature, and heat treatment duration with induced crystal phase.


CORROSION ◽  
10.5006/3881 ◽  
2021 ◽  
Author(s):  
Zachary Karmiol ◽  
Dev Chidambaram

This work investigates the oxidation of a nickel based superalloy, namely Alloy X, in water at elevated temperatures: subcritical water at 261°C and 27 MPa, the transition between subcritical and supercritical water at 374°C and 27 MPa, and supercritical water at 380°C and 27 MPa for 100 hours. The morphology of the sample surfaces were studied using scanning electron microscopy coupled with focused ion beam milling, and the surface chemistry was investigated using X-ray diffraction, Raman spectroscopy, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy before and after exposure studies. Surfaces of all samples were identified to comprise of a ferrite spinel containing aluminum.


2018 ◽  
Vol 6 (24) ◽  
pp. 11496-11506 ◽  
Author(s):  
Paul Pistor ◽  
Thomas Burwig ◽  
Carlo Brzuska ◽  
Björn Weber ◽  
Wolfgang Fränzel

We present the identification of crystalline phases by in situ X-ray diffraction during growth and monitor the phase evolution during subsequent thermal treatment of CH3NH3PbX3 (X = I, Br, Cl) perovskite thin films.


2019 ◽  
Author(s):  
Genevieve Buckley ◽  
Gediminas Gervinskas ◽  
Cyntia Taveneau ◽  
Hari Venugopal ◽  
James C. Whisstock ◽  
...  

AbstractCryo-transmission electron tomography (cryo-ET) in association with cryo-focused ion beam (cryo-FIB) milling enables structural biology studies to be performed directly within the cellular environment. Cryo-preserved cells are milled and a lamella with a thickness of 200-300 nm provides an electron transparent window suitable for cryo-ET imaging. Cryo-FIB milling is an effective method, but it is a tedious and time-consuming process, which typically results in ~10 lamellae per day. Here, we introduce an automated method to reproducibly prepare cryo-lamellae on a grid and reduce the amount of human supervision. We tested the routine on cryo-preserved Saccharomyces cerevisiae and demonstrate that this method allows an increased throughput, achieving a rate of 5 lamellae/hour without the need to supervise the FIB milling. We demonstrate that the quality of the lamellae is consistent throughout the preparation and their compatibility with cryo-ET analyses.


Sign in / Sign up

Export Citation Format

Share Document