Nucleation, Growth and Evolution of Hydroxyapatite Films on Calcite

2014 ◽  
Vol 1656 ◽  
pp. 3-8
Author(s):  
Sonia Naidu ◽  
Jeremy M. Blair ◽  
George W. Scherer

ABSTRACTMarble, a non-porous stone composed of calcite, is subject to acid rain dissolution due to its relatively high dissolution rate. With the goal of preventing such damage, we have investigated the deposition of films of relatively insoluble hydroxyapatite (HAP) on marble. This paper investigates the factors that affect the nucleation and growth kinetics of HAP on marble. A mild, wet chemical synthesis route, in which diammonium hydrogen phosphate (DAP) salt was reacted with marble, alone and with cationic and anionic precursors under different reaction conditions, was used to produce inorganic HAP films on the mineral surface. Film nucleation, growth and metastable phase evolution were studied, using techniques such as scanning electron microscopy (SEM) and grazing incidence X-ray diffraction (GID). The onset of nucleation, and the growth rate of the film, increased with cationic (calcium) and anionic (carbonate) precursor additions. The calcium and phosphate precursors also influenced metastable phase formation, introducing a new phase.

1988 ◽  
Vol 128 ◽  
Author(s):  
H. F. Rizzo ◽  
A. Echeverria ◽  
T. B. Massalski ◽  
H. Baxi

ABSTRACTThe triode sputtering technique and a “split-target” arrangement were used to produce metastable crystalline and amorphous phases in the Cu-W, Mo-Cu, Ag-Fe, Ag-Cu, Pu-Ta and Pu-V systems. These systems all exhibit liquid and solid immiscibility and have positive heats of mixing and atomic radii that differ by at least 10%. The sputtered coatings, whose thickness varied between 25 and 200 microns, were formed at deposition rates between 35 and 200 Å/s. They were characterized using x-ray diffraction, TEM, microprobe, microhardness, and DSC techniques. The observed amorphous and metastable solid solution phases are discussed in terms of predicated heats of formation for these phases using Miedema's thermodynamic approximations [1] that include chemical, elastic, and structural contributions. Differences in compositional ranges observed by high rate sputter deposition compared to other vapor deposition techniques (e.g., coevaporation) appeared to arise as a result of processes that occur during deposition or immediately following deposition.


1997 ◽  
Vol 481 ◽  
Author(s):  
P. A. I. Smith ◽  
J. Ding ◽  
P. G. McCormick ◽  
R. Street

ABSTRACTA detailed phase analysis of mechanically alloyed (Sm0.18Co0.82)100-xFex powders has been performed using X-ray diffraction and Mössbauer spectroscopy. A two-phase structure develops as the Fe content is increased, with an increasing proportion of bcc Fe-Co in addition to amorphous Sm-Co-Fe. Both phases become richer in Fe, but Fe is concentrated in the bcc phase, due to a limited ability of Fe to substitute in amorphous Sm-Co. Changes in phase formation with increasing Fe content can be correlated with changes in the calculated free energy of mixing of amorphous Sm-Co-Fe.


2013 ◽  
Vol 1528 ◽  
Author(s):  
Takeshi Harada ◽  
Akitoshi Mizuno ◽  
Masahito Watanabe

ABSTRACTThe influence of oxygen content on containerless solidification of Zr80Pt20 alloy has been studied by using conical nozzle levitation (CNL) technique. The doping level of oxygen from 41 to 5450 ppm mass oxygen (PMO) affects the undercooling of the liquid Zr80Pt20 alloy. Time-resolved synchrotron x-ray diffraction revealed that the quasicrystalline (QC) phase precipitated as a primary phase during solidification of the Zr80Pt20 alloy. The amount of the QC phase depends on the oxygen content in the alloy. This indicates that the doping level of oxygen in Zr80Pt20 alloy can be related to the metastable phase formation as well as the glass-formation ability.


2000 ◽  
Vol 628 ◽  
Author(s):  
Sophie Besson ◽  
Catherine Jacquiod ◽  
Thierry Gacoin ◽  
André Naudon ◽  
Christian Ricolleau ◽  
...  

ABSTRACTA microstructural study on surfactant templated silica films is performed by coupling traditional X-Ray Diffraction (XRD) and Transmission Electronic Microscopy (TEM) to Grazing Incidence Small Angle X-Ray Scattering (GISAXS). By this method it is shown that spin-coating of silicate solutions with cationic surfactant cetyltrimethylammonium bromide (CTAB) as a templating agent provides 3D hexagonal structure (space group P63/mmc) that is no longer compatible with the often described hexagonal arrangement of tubular micelles but rather with an hexagonal arrangement of spherical micelles. The extent of the hexagonal ordering and the texture can be optimized in films by varying the composition of the solution.


Author(s):  
A. Leineweber ◽  
M. Löffler ◽  
S. Martin

Abstract Cu6Sn5 intermetallic occurs in the form of differently ordered phases η, η′ and η′′. In solder joints, this intermetallic can undergo changes in composition and the state of order without or while interacting with excess Cu and excess Sn in the system, potentially giving rise to detrimental changes in the mechanical properties of the solder. In order to study such processes in fundamental detail and to get more detailed information about the metastable and stable phase equilibria, model alloys consisting of Cu3Sn + Cu6Sn5 as well as Cu6Sn5 + Sn-rich melt were heat treated. Powder x-ray diffraction and scanning electron microscopy supplemented by electron backscatter diffraction were used to investigate the structural and microstructural changes. It was shown that Sn-poor η can increase its Sn content by Cu3Sn precipitation at grain boundaries or by uptake of Sn from the Sn-rich melt. From the kinetics of the former process at 513 K and the grain size of the η phase, we obtained an interdiffusion coefficient in η of (3 ± 1) × 10−16 m2 s−1. Comparison of this value with literature data implies that this value reflects pure volume (inter)diffusion, while Cu6Sn5 growth at low temperature is typically strongly influenced by grain-boundary diffusion. These investigations also confirm that η′′ forming below a composition-dependent transus temperature gradually enriches in Sn content, confirming that Sn-poor η′′ is metastable against decomposition into Cu3Sn and more Sn-rich η or (at lower temperatures) η′. Graphic Abstract


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 232
Author(s):  
Pedro J. Sánchez-Soto ◽  
Eduardo Garzón ◽  
Luis Pérez-Villarejo ◽  
George N. Angelopoulos ◽  
Dolores Eliche-Quesada

In this work, an examination of mining wastes of an albite deposit in south Spain was carried out using X-ray Fluorescence (XRF), X-ray diffraction (XRD), particle size analysis, thermo-dilatometry and Differential Thermal Analysis (DTA) and Thermogravimetric (TG) analysis, followed by the determination of the main ceramic properties. The albite content in two selected samples was high (65–40 wt. %), accompanied by quartz (25–40 wt. %) and other minor minerals identified by XRD, mainly kaolinite, in agreement with the high content of silica and alumina determined by XRF. The content of Na2O was in the range 5.44–3.09 wt. %, being associated with albite. The iron content was very low (<0.75 wt. %). The kaolinite content in the waste was estimated from ~8 to 32 wt. %. The particle size analysis indicated values of 11–31 wt. % of particles <63 µm. The ceramic properties of fired samples (1000–1350 °C) showed progressive shrinkage by the thermal effect, with water absorption and open porosity almost at zero at 1200–1250 °C. At 1200 °C, the bulk density reached a maximum value of 2.38 g/cm3. An abrupt change in the phase evolution by XRD was found from 1150 to 1200 °C, with the disappearance of albite by melting in accordance with the predictions of the phase diagram SiO2-Al2O3-Na2O and the system albite-quartz. These fired materials contained as main crystalline phases quartz and mullite. Quartz was present in the raw samples and mullite was formed by decomposition of kaolinite. The observation of mullite forming needle-shape crystals was revealed by Scanning Electron Microscopy (SEM). The formation of fully densified and vitrified mullite materials by firing treatments was demonstrated.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Ruei-Cheng Lin ◽  
Tai-Kuang Lee ◽  
Der-Ho Wu ◽  
Ying-Chieh Lee

Ni-Cr-Si-Al-Ta resistive thin films were prepared on glass and Al2O3substrates by DC magnetron cosputtering from targets of Ni0.35-Cr0.25-Si0.2-Al0.2casting alloy and Ta metal. Electrical properties and microstructures of Ni-Cr-Si-Al-Ta films under different sputtering powers and annealing temperatures were investigated. The phase evolution, microstructure, and composition of Ni-Cr-Si-Al-Ta films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and Auger electron spectroscopy (AES). When the annealing temperature was set to 300°C, the Ni-Cr-Si-Al-Ta films with an amorphous structure were observed. When the annealing temperature was at 500°C, the Ni-Cr-Si-Al-Ta films crystallized into Al0.9Ni4.22, Cr2Ta, and Ta5Si3phases. The Ni-Cr-Si-Al-Ta films deposited at 100 W and annealed at 300°C which exhibited the higher resistivity 2215 μΩ-cm with −10 ppm/°C of temperature coefficient of resistance (TCR).


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3191
Author(s):  
Arun Kumar Mukhopadhyay ◽  
Avishek Roy ◽  
Gourab Bhattacharjee ◽  
Sadhan Chandra Das ◽  
Abhijit Majumdar ◽  
...  

We report the surface stoichiometry of Tix-CuyNz thin film as a function of film depth. Films are deposited by high power impulse (HiPIMS) and DC magnetron sputtering (DCMS). The composition of Ti, Cu, and N in the deposited film is investigated by X-ray photoelectron spectroscopy (XPS). At a larger depth, the relative composition of Cu and Ti in the film is increased compared to the surface. The amount of adventitious carbon which is present on the film surface strongly decreases with film depth. Deposited films also contain a significant amount of oxygen whose origin is not fully clear. Grazing incidence X-ray diffraction (GIXD) shows a Cu3N phase on the surface, while transmission electron microscopy (TEM) indicates a polycrystalline structure and the presence of a Ti3CuN phase.


Sign in / Sign up

Export Citation Format

Share Document