Persistent Inhibition of Cell Growth on Silver Implanted Glassy Polymeric Carbon

2006 ◽  
Vol 950 ◽  
Author(s):  
Robert L. Zimmerman ◽  
Ismet Gürhan ◽  
F. Ozdal-Kurt ◽  
B. H. Sen ◽  
Marcello Rodrigues ◽  
...  

ABSTRACTWe have shown that silver ion implantation or argon ion assisted surface deposition of silver inhibits cell growth on Glassy Polymeric Carbon (GPC), a desirable improvement of current cardiac implants. In vitro biocompatibility tests have been carried out with model cell lines to demonstrate that near surface implantation of silver in GPC can completely inhibit cell attachment on implanted areas while leaving adjacent areas vulnerable to strong cell adhesion. After cleaning and sterilization and more than one year in physiologic solution, the silver implanted GPC persists in inhibiting cell attachment.

2006 ◽  
Vol 942 ◽  
Author(s):  
Robert Lee Zimmerman ◽  
Ismet Gurhan ◽  
Daryush Ila ◽  
F. Ozdal-Kurt ◽  
B. H. Sen ◽  
...  

ABSTRACTAlthough Glassy Polymeric Carbon (GPC) is ideally suited for implants in the blood stream, tissue that normally forms around the moving parts of a GPC heart valve. There is concern that the tissue lose adhesion and create the condition for embolisms downstream. We have shown that silver ion implantation or argon ion assisted surface deposition of silver inhibits cell growth on GPC, a desirable improvement of current cardiac implants. In vitro biocompatibility tests have been carried out with model cell lines to demonstrate that near surface implantation of silver in GPC can completely inhibit cell attachment on implanted areas while leaving adjacent areas unaffected. Patterned ion implantation permits precise control of tissue growth on medical applications of GPC.


2005 ◽  
Vol 908 ◽  
Author(s):  
Robert Lee Zimmerman ◽  
Ismet Gürhan ◽  
Claudiu I. Muntele ◽  
Daryush Ila ◽  
Feyzan Özdal-Kurt ◽  
...  

AbstractBiocompatible Glassy Polymeric Carbon (GPC) is used for artificial heart valves and in other biomedical applications. Although it is ideally suited for implants in the blood stream, tissue that normally forms around the moving parts of a GPC heart valve sometimes loses adhesion and creates embolisms downstream. Here we compare silver ion implantation and silver deposition, each of which strongly inhibits cell attachment on GPC. Inhibition of cell adhesion is a desirable improvement to current GPC cardiac implants. In vitro biocompatibility tests have been carried out with model cell lines to demonstrate that traces of silver can favorably influence the surface of GPC for biomedical applications.


2018 ◽  
Vol 5 (8) ◽  
pp. 172033 ◽  
Author(s):  
Zhenfei Huang ◽  
Zhihong Wu ◽  
Bupeng Ma ◽  
Lingjia Yu ◽  
Yu He ◽  
...  

Titanium (Ti) is an ideal bone substitute due to its superior bio-compatibility and remarkable corrosion resistance. However, in order to improve the osteoconduction and osteoinduction capacities in clinical applications, different kinds of surface modifications are typically applied to Ti alloys. In this study, we fabricated a tightly attached polydopamine-assisted Fe 3 O 4 nanoparticle coating on Ti with magnetic properties, aiming to improve the osteogenesis of the Ti substrates. The PDA-assisted Fe 3 O 4 nanoparticle coatings were characterized by scanning electron microscopy, energy dispersive spectroscopy, atomic force microscopy and water contact angle measurements. The cell attachment and proliferation rate of the human bone mesenchymal stem cells (hBMSCs) on the Ti surface significantly improved with the Fe 3 O 4 /PDA coating when compared with the pure Ti without a coating. Furthermore, the results of in vitro alkaline phosphatase (ALP) activity at 7 and 14 days and alizarin red S staining at 14 days showed that the Fe 3 O 4 /PDA coating on Ti promoted the osteogenic differentiation of hBMSCs. Moreover, hBMSCs co-cultured with the Fe 3 O 4 /PDA-coated Ti for approximately 14 days also exhibited a significantly higher mRNA expression level of ALP, osteocalcin and runt-related transcription factor-2 (RUNX2). Our in vitro results revealed that the present PDA-assisted Fe 3 O 4 nanoparticle surface coating is an innovative method for Ti surface modification and shows great potential for clinical applications.


2016 ◽  
Vol 4 (10) ◽  
pp. 1412-1416 ◽  
Author(s):  
Tihomir Pospišil ◽  
Lejla Ferhatović Hamzić ◽  
Lada Brkić Ahmed ◽  
Marija Lovrić ◽  
Srećko Gajović ◽  
...  

The supramolecular self-assembles of a simple tripeptide Ac-l-Phe-l-Phe-l-Ala-NH2form a hydrogel matrix which may serve as the cell growth medium.


2019 ◽  
Vol 11 (51) ◽  
pp. 47739-47749 ◽  
Author(s):  
Malgorzata Aleksandrzak ◽  
Magdalena Jedrzejczak-Silicka ◽  
Krzysztof Sielicki ◽  
Katarzyna Piotrowska ◽  
Ewa Mijowska

1993 ◽  
Vol 331 ◽  
Author(s):  
Horng-Ban Lin ◽  
Stuart L. Cooper

AbstractIn an attempt to improve endothelial cell adhesion and growth on a polyurethane copolymer, cell adhesive RGD-containing peptides were grafted to the polymer backbone. Two peptide grafting reaction schemes, including one-step and two-step approaches, were developed. Amino acid analysis confirmed that the two-step approach had a higher peptide coupling efficiency. The two-step reaction scheme was utilized to prepare GRGDSY, GRGDVY and GRGESY (inactive control) peptide grafted polyurethanes with two different peptide densities (100 and 250 μmol/g polymer). Dynamic contact angle measurements indicated that the surfaces of the peptide grafted polyurethanes were more hydrophilic than the starting and carboxylated versions of the precursor polyurethane. In-vitro endothelial cell adhesion experiments showed that, without the presence of serum in culture medium, the GRGDSY- and GRGDVY-grafted polyurethanes dramatically enhanced cell attachment and spreading. Increasing the peptide density from 100 to 250 μmol/g polymer for the GRGDSYand GRGDVY-grafted polyurethanes resulted in an increase in cell attachment. With approximately the same peptide density (100 or 250 μmol/g polymer), the GRGDVY-grafted polymers supported more adherent cells than the GRGDSY-grafted polymers. Similar trends were observed in the in-vitro endothelial cell growth studies using culture medium containing serum and endothelial cell growth supplement. These RGD-peptide grafted polyurethanes may be useful in providing an easily prepared cell-adhesive substrate for various implantable devices and hybrid organs.


2007 ◽  
Vol 1020 ◽  
Author(s):  
Robert Lee Zimmerman ◽  
Ismet Gurhan ◽  
Daryush ILA

AbstractIt is well known that silver deposition avoids bacterial growth and inhibits the natural process of attachment of connective tissue to biocompatible materials in vivo. We have completed a five year investigation of the precise spatial control of cell growth on glassy polymeric carbon implanted with silver using ion beam techniques, and the persistence of the inhibitory effect on cell growth. Long term inhibition of cell growth on GPC is a desirable improvement on current cardiac implants and other biocompatible materials placed in the blood stream. We have used implanted silver ions near the surface of GPC to completely inhibit cell attachment and adhesion. Cells attach and strongly adhere to areas close to the silver implanted surfaces. Patterned ion implantation permits precise control of tissue growth on GPC and other biocompatible substrates. Cell growth limited to micrometric patterns on a substrate may be useful for in vitro studies of associated biological processes in an otherwise identical environment. The patterned inhibition of cell attachment persists for periods of time significant relative to typical implant lifetimes.


2019 ◽  
Vol 476 (24) ◽  
pp. 3835-3847 ◽  
Author(s):  
Aliyath Susmitha ◽  
Kesavan Madhavan Nampoothiri ◽  
Harsha Bajaj

Most Gram-positive bacteria contain a membrane-bound transpeptidase known as sortase which covalently incorporates the surface proteins on to the cell wall. The sortase-displayed protein structures are involved in cell attachment, nutrient uptake and aerial hyphae formation. Among the six classes of sortase (A–F), sortase A of S. aureus is the well-characterized housekeeping enzyme considered as an ideal drug target and a valuable biochemical reagent for protein engineering. Similar to SrtA, class E sortase in GC rich bacteria plays a housekeeping role which is not studied extensively. However, C. glutamicum ATCC 13032, an industrially important organism known for amino acid production, carries a single putative sortase (NCgl2838) gene but neither in vitro peptide cleavage activity nor biochemical characterizations have been investigated. Here, we identified that the gene is having a sortase activity and analyzed its structural similarity with Cd-SrtF. The purified enzyme showed a greater affinity toward LAXTG substrate with a calculated KM of 12 ± 1 µM, one of the highest affinities reported for this class of enzyme. Moreover, site-directed mutation studies were carried to ascertain the structure functional relationship of Cg-SrtE and all these are new findings which will enable us to perceive exciting protein engineering applications with this class of enzyme from a non-pathogenic microbe.


2006 ◽  
Vol 175 (4S) ◽  
pp. 257-257
Author(s):  
Jennifer Sung ◽  
Qinghua Xia ◽  
Wasim Chowdhury ◽  
Shabana Shabbeer ◽  
Michael Carducci ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document