The Effect of Implant Species on the Stability of Ion Implantation Damage

1988 ◽  
Vol 100 ◽  
Author(s):  
K. S. Jones ◽  
S. Prussin ◽  
D. Venables

ABSTRACTA systematic study of the effect of the chemical species, implanted into silicon, on the stability of the residual damage has been performed. Plan-view and cross-sectional transmission electron microscopy (TEM) studies show that the stability of the end of range damage (category II) defects upon annealing depends dramatically upon the implant species. This is exemplified by the a comparison of 69Ga and 72Ge implants in which a decrease in the dislocation density by over four orders is noted for 69Ga implants compared to 72Ge implants after identical annealing cycles. Additional comparisons of species with similar atomic masses indicate that this destabilizing influence on the dislocation loops by the implant species is related to exceeding the solid solubility of the implanted species. As a result of this dislocation loop destabilization effect complete elimination of the dislocation loops can be realized after relatively short thermal cycling. Evidence is presented indicating that the precipitates which form upon exceeding the solid solubility (category V defects) are dissolving during this enhanced defect dissolution process.

1985 ◽  
Vol 56 ◽  
Author(s):  
J. Ralston ◽  
G.W. Wicks ◽  
L.F. Eastman ◽  
L. Rathbun ◽  
B.C. DeCooman ◽  
...  

AbstractCross-sectional Transmission Electron Microscopy, Sputter-Auger spectroscopy, and Raman spectroscopy have been used to study intermixing and residual damage in annealed ion-implanted Al0.3Ga0.7As/GaAs superlattices. Several implant species were studied Nse, Si, Mg, Be). Three different regions can be distinguished in the annealed ionimplanted superlattice samples. The topmost region contains a dense network of stacking faults and microtwins, residual damage from an implantation-amorphized region which has recrystallized during annealing. In the second region, which is relatively defect-free, either total, or at least appreciable intermixing of the GaAs and Al0.3Ga0.7As layers occurs. For fixed annealing conditions, the degree of intermixing varies with the mass of the implanted species. The third region contains many small dislocation loops which form by the agglomeration of point defects during implantation or the subsequent annealing process. Raman spectroscopy is used to compare the degree of intermixing and residual damage between AlGaAs alloys generated by superlattice disordering and uniform “as-grown” alloys of the same composition which have undergone identical implant and anneal treatments.


1980 ◽  
Vol 2 ◽  
Author(s):  
John Fletcher ◽  
J. Narayan ◽  
D. H. Lowndes

ABSTRACTThe nature and depth distributions of residual damage in ion implanted and pulsed ruby laser annealed GaAs have been studied using both plan-view and cross-section transmission electron microscopy (TEM) specimens for high dose (1.0 × 1015 cm−2) Zn+, Se+ and Mg+ implants. It was found that laser energy densities above 0.36 J/cm2 were required to remove the implantation damage, this threshold energy density giving good agreement with that indicated by electrical activation measurements. Laser induced surface degradation of the GaAs was present even for energy densities as low as 0.25 J/cm2, and more severe damage, with the introduction of dislocations near the surface, was present for energy densities above 0.8 J/cm2. The use of thin SiO2 layers for encapsulation during laser annealing was found to substantially reduce this surface degradation.


1997 ◽  
Vol 469 ◽  
Author(s):  
G. Z. Pan ◽  
K. N. Tu

ABSTRACTPlan-view and cross-sectional transmission electron microscopy have been used to study the microstructural characterization of the nucleation and growth behavior of {113} rodlike defects, as well as their correlation with {111} dislocation loops in silicon amorphized with 50 keV, 36×1014 Si/cm2, 8.0 mAand annealed by rapid thermal anneals at temperatures from 500 °C to 1100 °C for various times. We found that the nucleations of the {113} rodlike defects and {111} dislocation loops are two separate processes. At the beginning of anneals, excess interstitials accumulate and form circular interstitial clusters at the preamorphous/crystalline interface at as low as 600 °C for 1 s. Then these interstitial clusters grow along the <110> direction to form {113} rodlike defects. Later, while the {113} defects have begun to grow and/or dissolve into matrix, the {111} faulted Frank dislocation loops start to form. We also found that the initial interstitial clusters prefer to grow along the <110>directions inclined to the implantation surface.


Author(s):  
Hyoung H. Kang ◽  
Michael A. Gribelyuk ◽  
Oliver D. Patterson ◽  
Steven B. Herschbein ◽  
Corey Senowitz

Abstract Cross-sectional style transmission electron microscopy (TEM) sample preparation techniques by DualBeam (SEM/FIB) systems are widely used in both laboratory and manufacturing lines with either in-situ or ex-situ lift out methods. By contrast, however, the plan view TEM sample has only been prepared in the laboratory environment, and only after breaking the wafer. This paper introduces a novel methodology for in-line, plan view TEM sample preparation at the 300mm wafer level that does not require breaking the wafer. It also presents the benefit of the technique on electrically short defects. The methodology of thin lamella TEM sample preparation for plan view work in two different tool configurations is also presented. The detailed procedure of thin lamella sample preparation is also described. In-line, full wafer plan view (S)TEM provides a quick turn around solution for defect analysis in the manufacturing line.


1992 ◽  
Vol 262 ◽  
Author(s):  
J.W. Honeycutt ◽  
J. Ravi ◽  
G. A. Rozgonyi

ABSTRACTThe effects of Ti and Co silicidation on P+ ion implantation damage in Si have been investigated. After silicidation of unannealed 40 keV, 2×1015 cm-2 P+ implanted junctions by rapid thermal annealing at 900°C for 10–300 seconds, secondary ion mass spectrometry depth profiles of phosphorus in suicided and non-silicided junctions were compared. While non-silicided and TiSi2 suicided junctions exhibited equal amounts of transient enhanced diffusion behavior, the junction depths under COSi2 were significantly shallower. End-of-range interstitial dislocation loops in the same suicided and non-silicided junctions were studied by planview transmission electron microscopy. The loops were found to be stable after 900°C, 5 minute annealing in non-silicided material, and their formation was only slightly effected by TiSi2 or COSi2 silicidation. However, enhanced dissolution of the loops was observed under both TiSi2 and COSi2, with essentially complete removal of the defects under COSi2 after 5 minutes at 900°C. The observed diffusion and defect behavior strongly suggest that implantation damage induced excess interstitial concentrations are significantly reduced by the formation and presence of COSi2, and to a lesser extent by TiSi2. The observed time-dependent defect removal under the suicide films suggests that vacancy injection and/or interstitial absorption by the suicide film continues long after the suicide chemical reaction is complete.


1981 ◽  
Vol 4 ◽  
Author(s):  
J. Narayan ◽  
G. L. Olson ◽  
O. W. Holland

ABSTRACTTime-resolved-reflectivity measurements have been combined with transmission electron microscopy (cross-section and plan-view), Rutherford backscattering and ion channeling techniques to study the details of laser induced solid phase epitaxial growth in In+ and Sb+ implanted silicon in the temperature range from 725 to 1500 °K. The details of microstructures including the formation of polycrystals, precipitates, and dislocations have been correlated with the dynamics of crystallization. There were limits to the dopant concentrations which could be incorporated into substitutional lattice sites; these concentrations exceeded retrograde solubility limits by factors up to 70 in the case of the Si-In system. The coarsening of dislocation loops and the formation of a/2<110>, 90° dislocations in the underlying dislocation-loop bands are described as a function of laser power.


1993 ◽  
Vol 311 ◽  
Author(s):  
Lin Zhang ◽  
Douglas G. Ivey

ABSTRACTSilicide formation through deposition of Ni onto hot Si substrates has been investigated. Ni was deposited onto <100> oriented Si wafers, which were heated up to 300°C, by e-beam evaporation under a vacuum of <2x10-6 Torr. The deposition rates were varied from 0.1 nm/s to 6 nm/s. The samples were then examined by both cross sectional and plan view transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy and electron diffraction. The experimental results are discussed in terms of a new kinetic model.


1995 ◽  
Vol 378 ◽  
Author(s):  
R. H. Thompson ◽  
V. Krishnamoorthy ◽  
J. Liu ◽  
K. S. Jones

AbstractP-type (100) silicon wafers were implanted with 28Si+ ions at an energy of 50 keV and to doses of 1 × 1015, 5 × 1015 and 1 × 1016 cm−2, respectively, and annealed in a N2 ambient at temperatures ranging from 700°C to 1000°C for times ranging from 15 minutes to 16 hours. The resulting microstructure consisted of varying distributions of Type II end of range dislocation loops. The size distribution of these loops was quantified using plan-view transmission electron microscopy and the strain arising from these loops was investigated using high resolution x-ray diffraction. The measured strain values were found to be constant in the loop coarsening regime wherein the number of atoms bound by the loops remained a constant. Therefore, an empirical constant of 7.7 × 10−12 interstitial/ppm of strain was evaluated to relate the number of interstitials bound by these dislocation loops and the strain. This value was used successfully in estimating the number of interstitials bound by loops at the various doses studied provided the annealing conditions were such that the loop microstructure was in the coarsening or dissolution regime.


1993 ◽  
Vol 319 ◽  
Author(s):  
X. J. Ning ◽  
P. Pirouz

AbstractDespite tremendous activity during the last few decades in the study of strain relaxation in thin films grown on substrates of a dissimilar material, there are still a number of problems which are unresolved. One of these is the nature of misfit dislocations forming at the film/substrate interface: depending on the misfit, the dislocations constituting the interfacial network have predominantly either in-plane or inclined Burgers vectors. While, the mechanisms of formation of misfit dislocations with inclined Burgers vectors are reasonably well understood, this is not the case for in-plane misfit dislocations whose formation mechanism is still controversial. In this paper, misfit dislocations generated to relax the strains caused by diffusion of boron into silicon have been investigated by plan-view and crosssectional transmission electron microscopy. The study of different stages of boron diffusion shows that, as in the classical model of Matthews, dislocation loops are initially generated at the epilayer surface. Subsequently the threading segments expand laterally and lay down a segment of misfit dislocation at the diffuse interface. The Burgers vector of the dislocation loop is inclined with respect to the interface and thus the initial misfit dislocations are not very efficient. However, as the diffusion proceeds, non-parallel dislocations interact and give rise to product segments that have parallel Burgers vectors. Based on the observations, a model is presented to elucidate the details of these interactions and the formation of more efficient misfit dislocations from the less-efficient inclined ones.


2004 ◽  
Vol 843 ◽  
Author(s):  
Songqing Wen ◽  
James Bentley ◽  
Jae-il Jang ◽  
G. M. Pharr

ABSTRACTNanoindentations were made on a (100) single crystal Si wafer at room temperature with a series of triangular pyramidal indenters having centerline-to-face angles ranging from 35° to 85°. Indentations produced at high (80 mN) and low (10 mN) loads were examined in plan-view by scanning electron microscopy and in cross-section by transmission electron microscopy. Microstructural observations were correlated with the indentation load-displacement behavior. Cracking and extrusion are more prevalent for sharp indenters with small centerline-to-face angles, regardless of the load. At low loads, the transformed material is amorphous silicon for all indenter angles. For Berkovich indentations made at high-load, the transformed material is a nanocrystalline mix of Si-I and Si-III/Si-XII, as confirmed by selected area diffraction. Extrusion of material at high loads for the cube-corner indenter reduces the volume of transformed material remaining underneath the indenter, thereby eliminating the pop-out in the unloading curve.


Sign in / Sign up

Export Citation Format

Share Document