Microstructural Investigation of the Deformation Zone below Nano-Indents in Copper

2007 ◽  
Vol 1049 ◽  
Author(s):  
Martin Rester ◽  
Christian Motz ◽  
Reinhard Pippan

AbstractThe deformation zone below nanoindents in copper single crystals with an <110>{111} orientation is investigated. Using a focused ion beam (FIB) system, cross-sections through the center of the indents were fabricated and subsequently analyzed by means of electron backscatter diffraction (EBSD) technique. Additionally, cross-sectional TEM foils were prepared and examined. Due to changes in the crystal orientation around and beneath the indentations, the plastically deformed zone can be visualized and related to the measured hardness values. Furthermore, the hardness data were analyzed using the Nix-Gao model where a linear relationship was found for H2 vs. 1/hc, but with different slopes for large and shallow indentations. The measured orientation maps indicate that this behavior is presumably caused by a change in the deformation mechanism. On the basis of possible dislocation arrangements, two models are suggested and compared to the experimental findings. The model presented for large imprints is based on dislocation pile-ups similar to the Hall-Petch effect, while the model for shallow indentations uses far-reaching dislocation loops to accommodate the shape change of the imprint.

2009 ◽  
Vol 17 (6) ◽  
pp. 20-23 ◽  
Author(s):  
Suhan Kim ◽  
Gao Liu ◽  
Andrew M. Minor

Focused ion beam (FIB) instrumentation has proven to be extremely useful for preparing cross-sectional samples for transmission electron microscopy (TEM) investigations. The two most widely used methods involve milling a trench on either side of an electron-transparent window: the “H-bar” and the “lift-out” methods [1]. Although these two methods are very powerful in their versatility and ability to make site-specific TEM samples, they rely on using a sacrificial layer to protect the surface of the sample as well as the removal of a relatively large amount of material, depending on the size of the initial sample. In this article we describe a technique for making thin film cross-sections with the FIB, known as Shadow FIBing, that does not require the use of a sacrificial layer or long milling times [2].


1997 ◽  
Vol 480 ◽  
Author(s):  
M. W. Phaneuf ◽  
N. Rowlands ◽  
G. J. C. Carpenter ◽  
G. Sundaram

AbstractFocused Ion Beam (FIB) systems have been steadily gaining acceptance as specimen preparation tools in the semiconductor industry. This is largely due to the fact that such instruments are relatively commonplace as failure analysis tools in semiconductor houses, and are commonly used in the preparation of cross-sections for imaging under the ion beam or using an electron beam in an SEM. Additionally, the ease with which cross-sectional TEM specimens of semiconductor devices can be prepared using FIB systems has been well demonstrated. However, this technology is largely unknown outside the semiconductor industry. Relatively few references exist in the literature on the preparation of cross-sectional TEM specimens of non-semiconductor materials by FIB. This paper discusses a specific use of FIB technology in the preparation of cross-sectional TEM specimens of non-semiconductor samples that are difficult to prepare by conventional means. One example of such materials is commercial galvannealed steel sheet that is used to form corrosion resistant auto-bodies for the automobile industry. Cross-sectional TEM specimens of this material have proved difficult and time-intensive to prepare by standard polishing and ion milling techniques due to galvanneal's inherent flaking and powdering difficulties, as well as the different sputtering rates of the various Fe-Zn intermetallic phases present in the galvannealed coatings. TEM results from cross-sectional samples of commercial galvannealed steel coatings prepared by conventional ion milling and FIB techniques are compared to assess image quality, the size of the electron-transparent thin regions that can be readily prepared and the quality of samples produced by both techniques. Specimen preparation times for both techniques are reported.


1998 ◽  
Vol 539 ◽  
Author(s):  
Suprijadi ◽  
H. Saka

AbstractMode I cracks introduced in Si at the ductile-brittle transition temperature (DBTT) have been examined extensively using transmission electron microscopy. Cross-sectional as well as plane-view specimens suitable for the observation were prepared using a focused ion beam technique. Many small dislocation loops nucleate at the fracture surface of a mode I crack during the propagation at DBTT.


Author(s):  
S.J Lloyd ◽  
A Castellero ◽  
F Giuliani ◽  
Y Long ◽  
K.K McLaughlin ◽  
...  

Examination of cross-sections of nanoindents with the transmission electron microscope has recently become feasible owing to the development of focused ion beam milling of site-specific electron transparent foils. Here, we discuss the development of this technique for the examination of nanoindents and survey the deformation behaviour in a range of single crystal materials with differing resistances to dislocation flow. The principal deformation modes we discuss, in addition to dislocation flow, are phase transformation (silicon and germanium), twinning (gallium arsenide and germanium at 400 °C), lattice rotations (spinel), shear (spinel), lattice rotations (copper) and lattice rotations and densification (TiN/NbN multilayers). The magnitude of the lattice rotation, about the normal to the foil, was measured at different positions under the indents. Indents in a partially recrystallized metallic glass Mg 66 Ni 20 Nd 14 were also examined. In this case a low-density porous region was formed at the indent tip and evidence of shear bands was also found. Further understanding of indentation deformation will be possible with three-dimensional characterization coupled with modelling which takes account of the variety of competing deformation mechanisms that can occur in addition to dislocation glide. Mapping the lattice rotations will be a particularly useful way to evaluate models of the deformation process.


2004 ◽  
Vol 12 (1) ◽  
pp. 41-43
Author(s):  
Shane Roberts ◽  
Daniel Flatoff

Modern microelectronics have rapidly decreased in geometry to enhance the speed and processing power of computers. Advanced devices are approaching design rules of sub 0.13 micron in size, and the trend continues at the rate dictated by Moore's Law, Coupled with this reduction in device size, is a change in materials used for producing these devices. Traditional aluminum interconnect metallurgy and oxide dielectric materials are being replaced with copper and low-kmaterials in an effort to continue the trend of shrinking device sizes and higher processing capacities.These changes in materials and device sizes have provided the impetus for alternative methods for producing cross sections. Although focused ion beam instrumentation has been successfully used for preparing cross sections, a combinatorial approach using polishing and argon ion milling has been found to dramatically enhance the ability to produce high quality cross sectional samples in a reasonably short amount of time.


2007 ◽  
Vol 22 (7) ◽  
pp. 1975-1986 ◽  
Author(s):  
Shih-kang Lin ◽  
Yuhi Yorikado ◽  
Junxiang Jiang ◽  
Keun-Soo Kim ◽  
Katsuaki Suganuma ◽  
...  

In this study, we investigated mechanical deformation-induced Sn whisker growth, which is frequently encountered in advanced flexible substrate packaging. Concentrated compressive stresses are introduced around the leads and solder surface finish joints connected by compression fixing. Six types of pure Sn thin films were electroplated on Ni-protected Cu substrates. These were 2- and 6-μm-thick Sn films electroplated with three different current densities: 2, 10, and 20 A/dm2. These films were compressed at room temperature and ambient humidity. The surface and cross-sectional grain morphologies of the films were examined by scanning electron microscopy and focused ion beam spectroscopy, respectively. The grain orientations of the electroplated Sn films were analyzed by x-ray diffraction and electron backscatter diffraction. After compression, nodule hillocks and whiskers were found around the indents. Beneath the indents, the original columnar Sn grains were deformed, and recovery and recrystallization processes occurred. Rapid whisker formation was observed. The whiskers induced by mechanical deformation are closely related to the grain microstructures, and the initial compression stresses are critical to the types and distribution of whiskers as well.


MRS Advances ◽  
2021 ◽  
Author(s):  
Claudia Richert ◽  
Yijuan Wu ◽  
Murilo Hablitzel ◽  
Erica T. Lilleodden ◽  
Norbert Huber

AbstractSegmentation of scanning electron microscopy (SEM) images of focused ion beam (FIB) cross-sections through indented regions in nanoporous gold (np-Au) is carried out. A key challenge for image analysis of open porous materials is the appropriate binarization of the pore and gold ligament regions while excluding material lying below the cross-sectional plane. Here, a manual approach to thresholding is compared to global and local approaches. The global thresholding resulted in excessive deviations from the nominal solid fraction, due to a strong gray-scale gradient caused by the tilt angle during imaging and material shadowing. In contrast, the local thresholding approach delivered local solid fractions that were free of global gradients, and delivered a quality comparable to the manual segmentation. The extracted densification profiles vertically below the indenter as well as parallel to the surface showed an exponential-type decay from the indenter tip towards the nominal value of 1 far from the indenter. Graphic abstract


2013 ◽  
Vol 20 (1) ◽  
pp. 133-140 ◽  
Author(s):  
Filip Lenrick ◽  
Martin Ek ◽  
Daniel Jacobsson ◽  
Magnus T. Borgström ◽  
L. Reine Wallenberg

AbstractFocused ion beam is a powerful method for cross-sectional transmission electron microscope sample preparation due to being site specific and not limited to certain materials. It has, however, been difficult to apply to many nanostructured materials as they are prone to damage due to extending from the surface. Here we show methods for focused ion beam sample preparation for transmission electron microscopy analysis of such materials, demonstrated on GaAs–GaInP core shell nanowires. We use polymer resin as support and protection and are able to produce cross-sections both perpendicular to and parallel with the substrate surface with minimal damage. Consequently, nanowires grown perpendicular to the substrates could be imaged both in plan and side view, including the nanowire–substrate interface in the latter case. Using the methods presented here we could analyze the faceting and homogeneity of hundreds of adjacent nanowires in a single lamella.


2002 ◽  
Vol 719 ◽  
Author(s):  
Myoung-Woon Moon ◽  
Kyang-Ryel Lee ◽  
Jin-Won Chung ◽  
Kyu Hwan Oh

AbstractThe role of imperfections on the initiation and propagation of interface delaminations in compressed thin films has been analyzed using experiments with diamond-like carbon (DLC) films deposited onto glass substrates. The surface topologies and interface separations have been characterized by using the Atomic Force Microscope (AFM) and the Focused Ion Beam (FIB) imaging system. The lengths and amplitudes of numerous imperfections have been measured by AFM and the interface separations characterized on cross sections made with the FIB. Chemical analysis of several sites, performed using Auger Electron Spectroscopy (AES), has revealed the origin of the imperfections. The incidence of buckles has been correlated with the imperfection length.


2018 ◽  
Author(s):  
Sang Hoon Lee ◽  
Jeff Blackwood ◽  
Stacey Stone ◽  
Michael Schmidt ◽  
Mark Williamson ◽  
...  

Abstract The cross-sectional and planar analysis of current generation 3D device structures can be analyzed using a single Focused Ion Beam (FIB) mill. This is achieved using a diagonal milling technique that exposes a multilayer planar surface as well as the cross-section. this provides image data allowing for an efficient method to monitor the fabrication process and find device design errors. This process saves tremendous sample-to-data time, decreasing it from days to hours while still providing precise defect and structure data.


Sign in / Sign up

Export Citation Format

Share Document