Hot-die Forging of a β-stabilized γ-TiAl Based Alloy

2008 ◽  
Vol 1128 ◽  
Author(s):  
Wilfried Wallgram ◽  
Helmut Clemens ◽  
Sascha Kremmer ◽  
Andreas Otto ◽  
Volker Güther

AbstractBecause of the small “deformation window” hot-working of γ-TiAl alloys is a complex and difficult task and, therefore, isothermal forming processes are favoured. In order to increase the deformation window a novel Nb and Mo containing γ-TiAl based alloy (TNM™ alloy) was developed. Due to a high volume fraction of β-phase at elevated temperatures the alloy can be hot-die forged under near conventional conditions, which means that conventional forging equipment with minor and inexpensive modifications can be used. With subsequent heattreatments balanced mechanical properties can be achieved. This paper summarizes our progress in establishing a “near conventional” forging route for the fabrication of γ-TiAl components. The results of lab scale compression tests and forging trials on an industrial scale are included. In addition, the mechanical properties of forged and heat-treated TNM™ material are presented.

2010 ◽  
Vol 654-656 ◽  
pp. 456-459 ◽  
Author(s):  
Thomas Schmoelzer ◽  
Svea Mayer ◽  
Frank Haupt ◽  
Gerald A. Zickler ◽  
Christian Sailer ◽  
...  

Intermetallic TiAl alloys with a significant volume fraction of the body-centered cubic β-phase at elevated temperatures have proven to exhibit good processing characteristics during hot-working. Being a strong β stabilizer, Mo has gained importance as an alloying element for so-called β/γ-TiAl alloys. Unfortunately, the effect of Mo on the appearing phases and their temperature dependence is not well known. In this work, two sections of the Ti-Al-Mo ternary phase diagram derived from experimental data are shown. These diagrams are compared with the results of in-situ high-temperature diffraction experiments using high-energy synchrotron radiation.


2011 ◽  
Vol 1295 ◽  
Author(s):  
Helmut Clemens ◽  
Thomas Schmoelzer ◽  
Martin Schloffer ◽  
Emanuel Schwaighofer ◽  
Svea Mayer ◽  
...  

ABSTRACTIn this paper, the physical metallurgy and properties of a novel family of high-strength γ-TiAl-based alloys is reviewed succinctly. These so-called TNM™ alloys contain Nb and Mo additions in the range of 3 - 7 atomic percent as well as small additions of B and C. For the definition of the alloy composition thermodynamic calculations using the CALPHAD method were conducted. The predicted phase transformation and ordering temperatures were verified by differential scanning calorimetry and in situ high-energy X-ray diffraction. TNM alloys solidify via the β-phase and exhibit an adjustable β-phase volume fraction at temperatures, where hot-working processes are performed. Due to the high volume fraction of β-phase these alloys can be processed isothermally as well as under near conventional conditions. In order to study the occurring deformation and recrystallization processes during hot-working, in situ diffraction experiments were conducted during compression tests at elevated temperatures. With subsequent heat-treatments a significant reduction of the β-phase is achieved. These outstanding features of TNM alloys distinguish them from other TiAl alloys which must exclusively be processed under isothermal conditions and/or which always exhibit a high fraction of β-phase at service temperature. After hot-working and multi-step heat-treatments, these alloys show yield strength levels > 800 MPa at room temperature and also good creep resistance at elevated temperatures.


2015 ◽  
Vol 1760 ◽  
Author(s):  
Manja Krüger ◽  
Georg Hasemann ◽  
Torben Baumann ◽  
Sebastian Dieck ◽  
Stefan Rannabauer

ABSTRACTThree phase Mo-Mo3Si-Mo5SiB2 alloys possess excellent mechanical properties over a wide temperature range. The Mo solid solution phase is needed for balanced mechanical properties at room temperature. However, this phase suffers from catastrophic oxidation behavior at high temperatures caused by the formation and evaporation of MoO3. The oxidation resistance of three phase alloys benefits from a high volume fraction of intermetallic phases. In particular Mo5SiB2 leads to the formation of a borosilicate protective glassy layer on the material’s surface while exposed to air at elevated temperatures. Hence, it is unlikely to identify alloy compositions that will yield both optimum mechanical and oxidation performance.Different coating systems and techniques, such as pack cementation, magnetron sputtering and plasma spraying are discussed in the literature to control the oxidation properties of Mo-based alloys. A different approach is to apply coating systems based on polymer derived ceramics (PDCs). Our present work introduces PDCs as a new type of promising and innovative oxidation-protective coatings for high temperature Mo-based alloys. After dip-coating with perhydropolysilazane (PHPS) and pyrolysis at 800 °C, dense and well-adhered SiNO ceramic layers could be achieved. These were investigated by scanning electron microscopy. Cyclic oxidation tests at 800 °C and 1100 °C were performed to investigate mass changes due to the thermal treatment. Indeed, even thin pyrolyzed PHPS layers with a thickness of around 70 nm to 175 nm protected the Mo-Si-B substrate during the initial stage of oxidation. By increasing the silicon oxide concentration at the material’s surface a first oxidation barrier was provided and thus, the strong initial mass loss could be decreased as compared to uncoated alloys. Furthermore, first results of the ongoing optimization process on PDC-coatings applied to Mo-Si-B alloys will be presented, involving the enhancement of the coating´s thickness or varying pyrolysis atmospheres.


1994 ◽  
Vol 364 ◽  
Author(s):  
W. R. Chen ◽  
J. Wang ◽  
B. Zhang ◽  
X. Wan ◽  
W. J. Chen

AbstractThe mechanical properties of a β-containing Ti-Al-Cr alloy were investigated at ambient and elevated temperatures. The results show that the Ti-Al-Cr alloy containing the β phase has a very high tensile strength but a poor ductility at ambient temperature, and that higher ductility is obtained at high temperatures. The temperature dependence of mechanical properties is found to be sensitive to the strain rate during the test. Fractography shows that the fracture mode changes from fully brittle to ductile-brittle mixture with the increased temperature. All the results suggest that the triple-phased TiAl alloys (α2+β+γ) may have the combined mechanical properties of the dual-phased T13Al ((α2+β) and dual-phased TiAl (α2+γ) alloys.


2012 ◽  
Vol 1516 ◽  
pp. 95-100 ◽  
Author(s):  
Alexander Donchev ◽  
Raluca Pflumm ◽  
Svea Mayer ◽  
Helmut Clemens ◽  
Michael Schütze

ABSTRACTIntermetallic titanium aluminides are potential materials for application in high temperature components. In particular, alloys solidifying via the β-phase are of great interest because they possess a significant volume fraction of the disordered body-centered cubic β-phase at elevated temperatures ensuring good processing characteristics during hot-working. Nevertheless, their practical use at temperatures as high as 800°C requires improvements of the oxidation resistance. This paper reports on the fluorine effect on a multi-phase TiAl-alloy in the cast and hot-isostatically pressed condition at 800°C in air. The behavior of the so-called TNM material (Ti-43.5Al-4Nb-1Mo-0.1B, in at %) was compared with that of two other TiAl-alloys which are Nb-free and contain different amounts of Mo (3 and 7 at%, respectively). The oxidation resistance of the fluorine treated samples was significantly improved compared to the untreated samples. After fluorine treatment all alloys exhibit slow alumina kinetics indicating a positive fluorine effect. Results of isothermal and thermocyclic oxidation tests at 800°C in air are presented and discussed in the view of composition and microstructure of the TiAl-alloys investigated, along with the impact of the fluorine effect on the oxidation resistance of these materials.


2011 ◽  
Vol 1295 ◽  
Author(s):  
Svea Mayer ◽  
Christian Sailer ◽  
Hirotoyo Nakashima ◽  
Thomas Schmoelzer ◽  
Thomas Lippmann ◽  
...  

ABSTRACTMolybdenum, being a strong β stabilizer, is an important alloying element in TiAl alloys, since a significant volume fraction of the disordered bcc β-phase at elevated temperatures improves the processing characteristics during hot-working. Unfortunately, the effect of Mo on the individual phases and their transition temperatures is not completely known but is necessary for designing engineering applications. In this paper, sections of the Ti-Al-Mo ternary phase diagram derived from thermodynamic calculations as well as experimental data are presented. Further, the phase transition temperatures given by the phase diagrams are compared with results from isothermal heat treatment studies, differential scanning calorimetry measurements and in-situ high-temperature diffraction experiments. Combining all of these results, a revised phase diagram is proposed.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1473
Author(s):  
Jun Zhao ◽  
Kang Wang ◽  
Shuaibin Wang ◽  
Zike Wang ◽  
Zhaohui Yang ◽  
...  

This paper presents results from experimental work on mechanical properties of geopolymer concrete, mortar and paste prepared using fly ash and blended slag. Compressive strength, splitting tensile strength and flexural strength tests were conducted on large sets of geopolymer and ordinary concrete, mortar and paste after exposure to elevated temperatures. From Thermogravimetric analyzer (TGA), X-ray diffraction (XRD), Scanning electron microscope (SEM) test results, the geopolymer exhibits excellent resistance to elevated temperature. Compressive strengths of C30, C40 and C50 geopolymer concrete, mortar and paste show incremental improvement then followed by a gradual reduction, and finally reach a relatively consistent value with an increase in exposure temperature. The higher slag content in the geopolymer reduces residual strength and the lower exposure temperature corresponding to peak residual strength. Resistance to elevated temperature of C40 geopolymer concrete, mortar and paste is better than that of ordinary concrete, mortar and paste at the same grade. XRD, TGA and SEM analysis suggests that the heat resistance of C–S–H produced using slag is lower than that of sulphoaluminate gel (quartz and mullite, etc.) produced using fly ash. This facilitates degradation of C30, C40 and C50 geopolymer after exposure to elevated temperatures.


2017 ◽  
Vol 24 (Supp02) ◽  
pp. 1850022
Author(s):  
MAOYUAN LI ◽  
LIN LU ◽  
ZHEN DAI ◽  
YIQIANG HONG ◽  
WEIWEI CHEN ◽  
...  

Amorphous Al–Cu–Ti metal foams were prepared by spark plasma sintering (SPS) process with the diameter of 10[Formula: see text]mm. The SPS process was conducted at the pressure of 200 and 300[Formula: see text]MPa with the temperature of 653–723[Formula: see text]K, respectively. NaCl was used as the space-holder, forming almost separated pores with the porosity of 65 vol%. The microstructure and mechanical behavior of the amorphous Al–Cu–Ti metal foams were systematically investigated. The results show that the crystallinity increased at elevated temperatures. The effect of pressure and holding time on the crystallization was almost negligible. The intermetallic compounds, i.e. Al–Ti, Al–Cu and Al–Cu–Ti were identified from X-ray diffraction (XRD) patterns. It was found that weak adhesion and brittle intermetallic compounds reduced the mechanical properties, while lower volume fraction and smaller size of NaCl powders improved the mechanical properties.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 906
Author(s):  
Dong Han ◽  
Yongqing Zhao ◽  
Weidong Zeng

The present study focuses on the effect of 1% Zr addition on the microstructure, tensile properties and superplasticity of a forged SP700 alloy. The results demonstrated that Zr has a significant effect on inhibiting the microstructural segregation and increasing the volume fraction of β-phase in the forged SP700 alloy. After annealing at 820 °C for 1 h and aging at 500 °C for 6 h, the SP700 alloy with 1% Zr showed a completely globular and fine microstructure. The yield strength, ultimate tensile strength and tensile elongation of the alloy with optimized microstructure were 1185 MPa, 1296 MPa and 10%, respectively. The superplastic deformation was performed at 750 °C with an elongation of 1248%. The improvement of tensile properties and superplasticity of the forged SP700 alloy by Zr addition was mainly attributed to the uniform and fine globular microstructures.


2004 ◽  
Vol 19 (5) ◽  
pp. 1531-1538 ◽  
Author(s):  
Guangyin Yuan ◽  
Kenji Amiya ◽  
Hidemi Kato ◽  
Akihisa Inoue

The structure and mechanical properties of Mg–Zn–Al–Y base cast alloys containing an icosahedral quasicrystal phase (i-phase) as a main strengthening phase were investigated. Mg–8Zn–4Al–xY base bulk alloys containing the i-phase were prepared by casting into a copper mold at moderate cooling rates. The Y addition was effective for decreasing the size of the i-phase and the increasing the homogeneity of its dispersed state. The mechanical properties examined by compression tests at room temperature were much superior to those of a conventional AZ91 Mg alloy. The creep tests at elevated temperatures indicated a promising high temperature creep resistance of the quasicrystal-reinforced Mg–Zn–Al–Y cast alloy. The strengthening mechanism was also discussed.


Sign in / Sign up

Export Citation Format

Share Document