In-Situannealing Transmission Electron Microscopy(Tem) Study of the Ti/GaAs Interfacial Reactions

1989 ◽  
Vol 148 ◽  
Author(s):  
Ki-Bum Kim ◽  
Robert Sinclair

ABSTRACTIn-situ annealing TEM experiments were performed on the Ti/GaAs system in order to study the dynamic behavior of interfacial reactions. Both plan-view and cross-sectional samples were investigated in either diffraction and imaging (both conventional and high resolution) modes. During experiments, we observed the following: (a) At the initial stage of reaction, the TiAs phase formed at the original Ti/GaAs interface with a distinct orientation with respect to the substrate; (b) as the reaction proceeded, the TiAs phase formed in a random manner; (c) finally, the liberated Ga species from the GaAs diffused out to the metal film and formed TiGa2 phase in the plan-view sample similar to the furnace-annealed case. For the cross-sectional sample, however, we did not observe any Ti:Ga phase formation. Instead, we observed the formation of voids both in the Ti film and in the GaAs substrate. The formation of different microstructure between in-situ and furnace annealed cases is explained by the sample geometry during annealing.

2005 ◽  
Vol 20 (7) ◽  
pp. 1878-1887 ◽  
Author(s):  
Takanori Kiguchi ◽  
Naoki Wakiya ◽  
Kazuo Shinozaki ◽  
Nobuyasu Mizutani

The crystallization process of yttria-stabilized zirconia (YSZ) gate dielectrics deposited on p-Si (001) and SiOx/p-Si(001) substrates and the growth process of SiOx has been investigated directly using high-temperature in situ cross-sectional view transmission electron microscopy (TEM) method and high-temperature plan-view in-situ TEM method. The YSZ layer is crystallized by the nucleation and growth mechanism at temperatures greater than 573 K. Nucleation originates from the film surface. Nucleation occurs randomly in the YSZ layer. Subsequently, the crystallized YSZ area strains the Si surface. Finally, it grows in the in-plane direction with the strain, whereas, if a SiOx layer of 1.4 nm exists, it absorbs the crystallization strain. Thereby, an ultrathin SiOx layer can relax the strain generated in the Si substrate in thin film crystallization process.


Author(s):  
T. Marieb ◽  
J. C. Bravman ◽  
P. Flinn ◽  
D. Gardner ◽  
M. Madden

Electromigration and stress voiding have been active areas of research in the microelectronics industry for many years. While accelerated testing of these phenomena has been performed for the last 25 years[1-2], only recently has the introduction of high voltage scanning electron microscopy (HVSEM) made possible in situ testing of realistic, passivated, full thickness samples at high resolution.With a combination of in situ HVSEM and post-testing transmission electron microscopy (TEM) , electromigration void nucleation sites in both normal polycrystalline and near-bamboo pure Al were investigated. The effect of the microstructure of the lines on the void motion was also studied.The HVSEM used was a slightly modified JEOL 1200 EX II scanning TEM with a backscatter electron detector placed above the sample[3]. To observe electromigration in situ the sample was heated and the line had current supplied to it to accelerate the voiding process. After testing lines were prepared for TEM by employing the plan-view wedge technique [6].


Author(s):  
Hyoung H. Kang ◽  
Michael A. Gribelyuk ◽  
Oliver D. Patterson ◽  
Steven B. Herschbein ◽  
Corey Senowitz

Abstract Cross-sectional style transmission electron microscopy (TEM) sample preparation techniques by DualBeam (SEM/FIB) systems are widely used in both laboratory and manufacturing lines with either in-situ or ex-situ lift out methods. By contrast, however, the plan view TEM sample has only been prepared in the laboratory environment, and only after breaking the wafer. This paper introduces a novel methodology for in-line, plan view TEM sample preparation at the 300mm wafer level that does not require breaking the wafer. It also presents the benefit of the technique on electrically short defects. The methodology of thin lamella TEM sample preparation for plan view work in two different tool configurations is also presented. The detailed procedure of thin lamella sample preparation is also described. In-line, full wafer plan view (S)TEM provides a quick turn around solution for defect analysis in the manufacturing line.


1993 ◽  
Vol 311 ◽  
Author(s):  
Lin Zhang ◽  
Douglas G. Ivey

ABSTRACTSilicide formation through deposition of Ni onto hot Si substrates has been investigated. Ni was deposited onto <100> oriented Si wafers, which were heated up to 300°C, by e-beam evaporation under a vacuum of <2x10-6 Torr. The deposition rates were varied from 0.1 nm/s to 6 nm/s. The samples were then examined by both cross sectional and plan view transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy and electron diffraction. The experimental results are discussed in terms of a new kinetic model.


2004 ◽  
Vol 10 (1) ◽  
pp. 134-138 ◽  
Author(s):  
Masaki Takeguchi ◽  
Kazutaka Mitsuishi ◽  
Miyoko Tanaka ◽  
Kazuo Furuya

About 1 monolayer of palladium was deposited onto a silicon (111) 7 × 7 surface at a temperature of about 550 K inside an ultrahigh vacuum transmission electron microscope, resulting in formation of Pd2Si nanoislands and a 1 × 1 surface layer. Pd clusters created from an excess of Pd atoms on the 1 × 1 surface layer were directly observed byin situplan view high-resolution transmission electron microscopy. When an objective aperture was introduced so that electron diffractions less than 0.20 nm were filtered out, the lattice structure of the 1 × 1 surface with 0.33 nm spacing and the Pd clusters with a trimer shape were visualized. It was found that image contrast of the 1 × 1 lattice on the specific height terraces disappeared, and thereby an atomic structure of the Pd clusters was clearly observed. The appearance and disappearance of the 1 × 1 lattice was explained by the effect of the kinematical diffraction. It was identified that a Pd cluster was composed of three Pd atoms without a centered Si atom, which is consistent with the model proposed previously. The feature of the Pd clusters stuck at the surface step was also described.


2004 ◽  
Vol 843 ◽  
Author(s):  
Songqing Wen ◽  
James Bentley ◽  
Jae-il Jang ◽  
G. M. Pharr

ABSTRACTNanoindentations were made on a (100) single crystal Si wafer at room temperature with a series of triangular pyramidal indenters having centerline-to-face angles ranging from 35° to 85°. Indentations produced at high (80 mN) and low (10 mN) loads were examined in plan-view by scanning electron microscopy and in cross-section by transmission electron microscopy. Microstructural observations were correlated with the indentation load-displacement behavior. Cracking and extrusion are more prevalent for sharp indenters with small centerline-to-face angles, regardless of the load. At low loads, the transformed material is amorphous silicon for all indenter angles. For Berkovich indentations made at high-load, the transformed material is a nanocrystalline mix of Si-I and Si-III/Si-XII, as confirmed by selected area diffraction. Extrusion of material at high loads for the cube-corner indenter reduces the volume of transformed material remaining underneath the indenter, thereby eliminating the pop-out in the unloading curve.


1991 ◽  
Vol 235 ◽  
Author(s):  
Yung-Jen Lin ◽  
Ming-Deng Shieh ◽  
Chiapying Lee ◽  
Tri-Rung Yew

ABSTRACTSilicon epitaxial growth on silicon wafers were investigated by using plasma enhanced chemical vapor deposition from SiH4/He/H2. The epitaxial layers were growm at temperatures of 350°C or lower. The base pressure of the chamber was greater than 2 × 10−5 Torr. Prior to epitaxial growth, the wafer was in-situ cleaned by H2 baking for 30 min. The epi/substrate interface and epitaxial layers were observed by cross-sectional transmission electron microscopy (XTEM). Finally, the influence of the ex-situ and in-situ cleaning processes on the qualities of the interface and epitaxial layers was discussed in detail.


1987 ◽  
Vol 93 ◽  
Author(s):  
E. Gerritsen ◽  
H. J. Ligthart ◽  
T. E. G. Deenen

ABSTRACTPoly- and single crystalline copper was implanted with aluminium and nitrogen at doses ranging from 1016 to 5 × 1017 at/cm2 and energies of 170 keV. The corrosion resistance of the implanted surfaces was tested by exposure to an H25-containing atmosphere. The amount of copper sulphide formed was measured by chrono potentiometric reduction. The amount of corrosion products was markedly reduced (up to a factor 50) by high dose implantations of aluminium. The microstructure of the implanted copper was examined by Transmission Electron Microscopy of cross-sectioned specimens. A deep damage layer far exceeding the ion range was observed. XTEM-pictures of aluminium implanted copper single crystals of various orientations suggest a channeling mechanism for this deep damage layer. In situ annealing of the specimens in the TEM showed that most of the implantation damage is removed at 600°C except for an array of dislocations at the end of the damage range.


1985 ◽  
Vol 54 ◽  
Author(s):  
A. Lahav ◽  
M. Eizenberg ◽  
Y. Komem

ABSTRACTThe reaction between Ni60Ta40 amorphous alloy and (001) GaAs was studied by cross-sectional transmission electron microscopy, Auger spectroscopy, and x-ray diffraction. At 400°C formation of Ni GaAs at the interface with GaAs was observed. After heat treatment at 600°C in vacuum a layered structure of TaAs/NiGa/GaAs has been formed. The NiGa layer has epitaxial relations to the GaAs substrate. The vertical phase separation can be explained by opposite diffusion directions of nickel and arsenic atoms.


Sign in / Sign up

Export Citation Format

Share Document