scholarly journals Aspects Of Chemistry and Chemical Processing Of Organically Modified Ceramics

1990 ◽  
Vol 180 ◽  
Author(s):  
Helmut K. Schmidt

ABSTRACTFor the synthesis of composites on a nano or molecular level, chemical or physical methods have to be used since mechanical procedures cannot be employed for these systems. If organics have to be included, low temperature processing has to be used for the synthesis of the inorganic component in order not to damage the organic component. Sol-gel techniques are an appropriate means to synthesize oxidic networks by soft chemistry, and various systems of organically modified ceramics (ORMOCERs) have been developed so far. It has been shown that the synthesis parameter can be used to tailor the material properties in a wide range. A review over the chemistry and chemical properties of ORMOCERs and several examples of material developments will be given.

NANO ◽  
2021 ◽  
pp. 2150050
Author(s):  
Zhaoyu Han ◽  
Sen Li ◽  
Shaoxian Yin ◽  
Zhi-Qin Wang ◽  
Yanfei Cai ◽  
...  

Being the newest member of the 2D materials family, 2D-nanosheet possesses many distinctive physical and chemical properties resulting in a wide range of potential applications. Recently, it was discovered that 2D COF can adsorb single-stranded DNA (ss-DNA) efficiently as well as usefully to quench fluorophores. These properties make it possible to prepare DNA-based optical biosensors using 2D COF. While practical analytical applications are being demonstrated, the fundamental understanding of binding between 2D COF and DNA in solution received relatively less attention. In this work, we carried out a systematic study to understand the adsorption and desorption kinetic, mechanism, and influencing factors of ss-DNA on the surface of 2D COF. We demonstrated that shorter DNAs are adsorbed more rapidly and bind more tightly to the surface of 2D COF. The adsorption is favored by a higher pH. The different buffer types also can affect the adsorption. In Tris-HCl solution, the adsorption reached highest efficiency. By adding the complementary DNA (cDNA), desorption of the absorbed DNA on 2D COF can be achieved. Further, desorption efficiency can also be exchanged by various surfactant in solution. These findings are important for further understanding of the interactions between DNA and COFs and for the optimization of DNA and COF-based devices and sensors.


2018 ◽  
Vol 89 (2) ◽  
pp. 416-425
Author(s):  
William Giovanni Cortés-Ortiz ◽  
Alexander Baena-Novoa ◽  
Carlos Alberto Guerrero-Fajardo

2010 ◽  
Vol 1278 ◽  
Author(s):  
L.L. Díaz-Flores ◽  
A. S. López Rodríguez ◽  
P. SifuentesGallardo ◽  
M.A. Hernàndez Rivera ◽  
M.a Garnica Romo ◽  
...  

AbstractThis work is about the production of hybrid coatings of the system SiO2-PMMA (PMMA, polymethylmethacrylate). These materials have interesting mechanical and chemical properties useful for anticorrosive and wear resistance applications. SiO2-PMMA hybrids were obtained by the sol-gel traditional process, using tetraethylorthosilicate (TEOS) and methylmethacrylate (MMA) by Aldrich Co, as starting reagents. The SiO2:PMMA ratio was varied from 0:1 to about 1:1 at air atmosphere deposition. The coatings were obtained on acrylic sheets and silicon wafers. A diversity of coatings with chemical composition ranging from SiO2 and PMMA to obtain the SiO2-PMMA hybrids were obtained. Infrared (IR) and atomic force microscopy (AFM), were performed to determinate structural and morphological behavior.


2020 ◽  
Author(s):  
Igor Nikolaevich Tanutrov ◽  
Marina Nikolaevna Sviridova

In order to increase the extraction of germanium in the technology of production of germanium concentrates, as well as finding ways to eliminate the accumulation of toxic waste using modern techniques and equipment, the physical and chemical properties of waste chemical processing of germanium concentrates (OHGC) of two domestic enterprises were experimentally studied. The main components of OHGC are: sulphate hemihydrate CaSO4·0.5H2O and hypochlorite Ca(OCl)2 calcium. The moisture content of the sludge amounted to 30–50 %. The content of germanium in the cakes of both companies is in the range of 0.20 and 0.27 %, respectively, indicating the feasibility of recovery in the Ge. At the same time, the samples of cakes differ significantly in the content of impurities, which depends on the types of raw materials in the preparation of concentrates. Granulometric composition of cakes is characterized by high dispersion. With an average diameter of 12 μm, all particle sizes are in the range of 0.5-15 μm. The distribution of particle sizes is shifted in interval of 0–15 μm, and the area of the particles less than 3 μm is not more than 10 %. The high dispersion of the cake is reflected in the specific surface area, which is 23.7 m2/g. Thermographic study found that the heating of the sample cake is accompanied by two endothermic effects of dehydration at 110 and 145–168 ∘C calcium sulfate and hypochloride semihydrate with corresponding weight loss of 13.1 and 12.9 %. The presence of toxic impurities (arsenic, zinc and lead), as well as chlorine, presents significant challenges for the development of disposal technology with the extraction of germanium. Assuming that the undiscovered part of the germanium in the concentrate is compounds or solid solutions with silicon dioxide, an effective technology should include their reagent high temperature treatment. Keywords: waste, germanium concentrate, chemical processing, waste, physical and chemical properties


2021 ◽  
Vol 9 ◽  
Author(s):  
O. Yablonskaya ◽  
E. Buravleva ◽  
K. Novikov ◽  
V. Voeikov

Hydrated fullerene C60 (HyFn) is a supramolecular object in which the nanosized fullerene molecule is enclosed in a multilayer shell of water molecules. Despite the fact that fullerene C60 is chemically rather inert, aqueous solutions of HyFn exhibit a wide spectrum of biological activity in particular in low and ultra-low concentrations. Thus, physical and chemical properties of aqueous solutions of HyFn in a wide range of its dilutions are of interest. Here we compared some physical and chemical properties of aqueous systems prepared by successive 100-fold dilutions of HyFn (10–7 M) with deionized water, with their intensive shaking at each stage up to the calculated HyFn concentration of 10–31 M and of the corresponding “dilutions” of deionized water prepared in the same manner (controls). We studied the character of рН changes in dilutions when titrating them with HCl and NaOH. It turned out that HyFn dilutions had significantly higher buffering capacity against acidification with HCl than control water “dilutions.” At the highest acidity reached pH in all HyFn dilutions was almost 0.3 units higher than in the respective controls. Average buffering capacity of HyFn dilutions and water controls when titrated with NaOH did not differ. However, differences in buffering capacity could be seen between consecutive dilutions of HyFn at their titration either with NaOH or with HCl. Most prominent differences were observed between consecutive HyFn dilutions in the range of calculated concentrations 10–17–10–31 M titrated with NaOH while no significant differences in pH between equivalent “dilutions” of control water were observed. Similar though less prominent variations in buffering capacity between consecutive HyFn dilutions titrated with HCl were also noticed. Thus, titration with an acid and especially with an alkali made it possible to reveal differences between individual dilutions of HyFn, as well as differences between HyFn dilutions and corresponding dilutions of water. These features may be due to complexity in the structural properties of aqueous systems, which, supposedly, can arise due to the emergence of heterogenous aqueous regions (“clouds”) in the course of their dilutions with intensive mixing at each stage. In order to find out if such heterogeneity is a characteristic for HyFn dilutions we used the method of drying microsphere-containing droplets, whose aqueous base were either HyFn dilutions in the range of calculated HyFn concentration 10–7–10–31 M or respective water controls. It was found that a significant part of HyFn dilutions is characterized by mesoscopic heterogeneity. It showed up by the tendency of microspheres to concentrate in a specific way resembling ornaments once the droplets had dried. As the degree of HyFn dilution increased, the number of dried droplets with an ornament-like microsphere distribution increased. Same was also observed in water control drops. However, for the dilutions of HyFn equivalent to concentrations 10–19–10–31 M the percentage of complexly structured dried up droplets reached 60–80%, while for dried out drops of respective water controls it did not exceed 15–20%. Thus, the physicochemical properties of high dilutions of hydrated fullerene differ not only from each other dependently on the dilution level, but also from those of high dilutions of water, which can be explained by the structuredness and heterogeneity of these aqueous systems. Therefore, upon dilution process the properties of the solutions change according to complex and non-linear laws so that final dilutions cannot be identical in their properties and features to those of the initial solutions (before dilutions process) and to the untreated water. Dilution process, in view of the aforementioned, should not be underestimated when analyzing properties of the solutions, having shown to be able to affect dramatically properties of the solutions.


2007 ◽  
Vol 336-338 ◽  
pp. 2278-2281 ◽  
Author(s):  
Moon Kyong Na ◽  
Dong Pil Kang ◽  
Hoy Yul Park ◽  
Myeong Sang Ahn ◽  
In Hye Myung

Three kinds of colloidal silica (CS)/silane sol solutions were synthesized in variation with parameters such as different acidity and reaction time. Sol solutions were prepared from HSA CS/ methyltrimethoxysilane (MTMS), LS CS/MTMS and LS CS/MTMS/γ -Glycidoxypropyltri methoxysilane (ES) solutions. In order to understand their physical and chemical properties, sol-gel coating films were fabricated on glass. Coating films on glass, obtained from LS/MTMS sol, had high contact angle, also, much enhanced flat surface in the case of LS/MTMS sol was observed in comparison with HSA/ MTMS sol. From all sol-gel solutions, seasoning effect of for enhancing properties of sol-gel coating layer on glass was observed while such sol-gel solutions were left for 7days. In initial stage of sol-gel reaction, all most of sol solutions used in this work seem to be unstable, formation of coating films was a little hazy and rough. However, improved coating films as observed in 4days later. LS/MTMS/ES sol solutions were synthesized with ES, adding to LS/MTMS sol. Contact angle of LS/MTMS/ES sol-gel coating films decreased, since ES played a role in forming hydrophilic hydroxyl sol. The elastic portion of coating films prepared from LS/MTMS/ES sol increased with addition of ES, but thermal stability decreased a little.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2828
Author(s):  
Dae-Young Kim ◽  
Hyun-Joo Choi

Metal matrix composites (MMCs) are promising alternatives to metallic alloys. Their high strength-to-weight ratios; high temperature stabilities; and unique thermal, electrical, and chemical properties make them suitable for automotive, aerospace, defense, electrical, electronic, energy, biomedical, and other applications. The wide range of potential combinations of materials allows the properties of MMCs to be tailored by manipulating the morphology, size, orientation, and fraction of reinforcement, offering further opportunities for a variety of applications in daily life. This Special Issue, “Metal Matrix Composites”, addresses advances in the material science, processing, material modeling and characterization, performance, and testing of metal matrix composites.


1994 ◽  
Vol 346 ◽  
Author(s):  
S. Prabakar ◽  
R. A. Assink ◽  
N. K. Raman ◽  
C. J. Brinker

ABSTRACTHigh resolution 29Si NMR has been used to study the extent of cross condensation taking place in a hybrid organic/inorganic sol-gel system. Tetraethoxysilane (TEOS) and methyltriethoxysilane (MTEOS) sol-gels were chosen for this purpose. The sols were prepared by acid catalyzed hydrolysis of TEOS and MTEOS with a H2O/Si ratio of 0.3. 29Si NMR shows signals due to both self-condensation and cross-condensation between TEOS and MTEOS. Resonance assignments were made by comparing the positions and intensities of peaks in the spectra of single and multicomponent systems. It was found that, within experimental error, the self- and cross-condensation rates are equal and that extensive molecular level mixing takes place during the early stages of the reaction.


2018 ◽  
Vol 44 ◽  
pp. 00197 ◽  
Author(s):  
Katarzyna Wystalska ◽  
Krystyna Malińska ◽  
Renata Włodarczyk ◽  
Olga Chajczyk

Pyrolysis of biomass residues from agriculture and food processing industry allows production of biochars with diverse physical and chemical properties for a wide range of applications in agriculture and environmental protection. Biochars produced from pelletized sunflower husks through slow pyrolysis in the range of temperatures (480–580°C) showed total carbon of 70.53%–81.96%, total nitrogen of 1.2%, alkaline pH (9.37–10.32), low surface area (0.93–2.91 m2 g-1) and porosity of 13.23–15.43%. Higher pyrolysis temperatures resulted in lower biochar yields. With the increase in temperature the content of organic matter, nitrogen, Ca and Mg decreased whereas the increase in temperature resulted in higher contents of total carbon and phosphorus. Produced biochars showed potential for agricultural applications.


Sign in / Sign up

Export Citation Format

Share Document