Ion Implantation For High Performance Ill-V Jfets And Hfets

1996 ◽  
Vol 421 ◽  
Author(s):  
J. C. Zolper ◽  
A. G. Baca ◽  
M. E. Sherwin ◽  
J. F. Klem

AbstractIon implantation has been an enabling technology for the realization of many high performance electronic devices in III-V semiconductor materials. We report on advances in ion implantation processing technology for application to GaAs JFETs, AlGaAs/GaAs HFETs, and InGaP or InA1P-barrier HFETs. In particular, the GaAs JFET has required the development of shallow p-type implants using Zn or Cd with junction depths down to 35 nm after the activation anneal. Implant activation and ionization issues for AlGaAs will be reported along with those for InGaP and InAlP. A comprehensive treatment of Si-implant doping of AlGaAs is given based on the donor ionization energies and conduction band density-of-states dependence on Al-composition. Si and Si+P implants in InGaP are shown to achieve higher electron concentrations than for similar implants in AlGaAs due to the absence of the deep donor (DX) level. An optimized P co-implantation scheme in InGaP is shown to increase the implanted donor saturation level by 65%.

Author(s):  
Ayoub Abdulhafith Sadek Zumeit ◽  
Abhishek S Dahiya ◽  
Adamos Christou ◽  
Ravinder Dahiya

Abstract lexible electronics with high-performance devices is crucial for transformative advances in several emerging and traditional applications. To address this need, herein we present p-type silicon (Si) nanoribbons (NR)-based high-performance field-effect transistors (FETs) developed using innovative Direct Roll Transfer Stamping (DRTS) process. First, ultrathin Si NRs (~70 nm) are obtained from silicon on insulator (SOI) wafers using conventional top-down method, and then DRTS method is employed to directly place the NRs onto flexible substrates at room temperature (RT). The NRFETs are then developed following RT fabrication process which include deposition of high-quality SiNx dielectric. The fabricated p-channel transistors demonstrate high linear mobility ~100±10 cm2/Vs, current on/off ratio >10^4, and low gate leakage (<1nA). Further, the transistors showed robust device performance under mechanical bending and at wide temperature range (15 to 90 °C), showing excellent potential for futuristic high-performance flexible electronic devices/circuits.


2018 ◽  
Vol 20 (13) ◽  
pp. 8658-8667 ◽  
Author(s):  
Thao P. Nguyen ◽  
P. Roy ◽  
Ji Hoon Shim

A density functional theory (DFT) calculation predicts phenacene as one of the most promising organic semiconductors for high efficiency electronic devices.


1996 ◽  
Vol 423 ◽  
Author(s):  
J. C. Zolper ◽  
R. G. Wilson ◽  
S. J. Pearton ◽  
R. A. Stall

AbstractIII-N photonic devices have made great advances in recent years following the demonstration of doping of GaN p-type with Mg and n-type with Si. However, the deep ionization energy level of Mg in GaN (∼160 meV) limits the ionized of acceptors at room temperature to less than 1.0% of the substitutional Mg. With this in mind, we used ion implantation to characterize the ionization level of Ca in GaN since Ca had been suggested by Strite [1] to be a shallow acceptor in GaN. Ca-implanted GaN converted from n-to-p type after a 1100°C activation anneal. Variable temperature Hall measurements give an ionization level at 169 meV. Although this level is equivalent to that of Mg, Ca-implantation may have advantages (shallower projected range and less straggle for a given energy) than Mg for electronic devices. In particular, we report the first GaN device using ion implantation doping. This is a GaN junction field effect transistor (JFET) which employed Ca-implantation. A 1.7 µm JFET had a transconductance of 7 mS/mm, a saturation current at 0 V gate bias of 33 mA/mm, a ft of 2.7 GHz, and a fmax of 9.4 GHz. 0-implantation was also studied and shown to create a shallow donor level (∼25 meV) that is similar to Si. SIMS profiles of as-implanted and annealed samples showed no measurable redistribution of either Ca or0inGaNat 1125°C.


1981 ◽  
Vol 4 ◽  
Author(s):  
D.E. Eastman ◽  
P. Heimann ◽  
F.J. Himpsel ◽  
B. Reihl ◽  
D.M. Zehner ◽  
...  

ABSTRACTHighly-degenerate As-doped n-type and B-doped p-type Si(l11)−(1×1) surfaces have been prepared via ion implantation and laser annealing and studied using photoemission. For As concentrations of ∼4–7%, surface states become very different from those for intrinsic Si(l11)−(1×1) and the Fermi level EF at the surface moves to the conduction band minima resulting in a zero height n-type Schottky barrier. Emission from the conduction band minima has been directly viewed in momentum space.


Author(s):  
Stephen R. Forrest

Organic electronics is a platform for very low cost and high performance optoelectronic and electronic devices that cover large areas, are lightweight, and can be both flexible and conformable to irregularly shaped surfaces such as foldable smart phones. Organics are at the core of the global organic light emitting device (OLED) display industry, and also having use in efficient lighting sources, solar cells, and thin film transistors useful in medical and a range of other sensing, memory and logic applications. This book introduces the theoretical foundations and practical realization of devices in organic electronics. It is a product of both one and two semester courses that have been taught over a period of more than two decades. The target audiences are students at all levels of graduate studies, highly motivated senior undergraduates, and practicing engineers and scientists. The book is divided into two sections. Part I, Foundations, lays down the fundamental principles of the field of organic electronics. It is assumed that the reader has an elementary knowledge of quantum mechanics, and electricity and magnetism. Background knowledge of organic chemistry is not required. Part II, Applications, focuses on organic electronic devices. It begins with a discussion of organic thin film deposition and patterning, followed by chapters on organic light emitters, detectors, and thin film transistors. The last chapter describes several devices and phenomena that are not covered in the previous chapters, since they lie outside of the current mainstream of the field, but are nevertheless important.


1998 ◽  
Vol 34 (19) ◽  
pp. 1888 ◽  
Author(s):  
G. Höck ◽  
T. Hackbarth ◽  
U. Erben ◽  
E. Kohn ◽  
U. König
Keyword(s):  

2019 ◽  
Vol 288 ◽  
pp. 104-112 ◽  
Author(s):  
Yanghai Gui ◽  
Lele Yang ◽  
Kuan Tian ◽  
Hongzhong Zhang ◽  
Shaoming Fang

2021 ◽  
Vol 118 (10) ◽  
pp. 102106
Author(s):  
N. Temahuki ◽  
F. Jomard ◽  
A. Lusson ◽  
I. Stenger ◽  
S. Hassani ◽  
...  
Keyword(s):  

2021 ◽  
pp. 150274
Author(s):  
Adriano Panepinto ◽  
Arnaud Krumpmann ◽  
David Cornil ◽  
Jérôme Cornil ◽  
Rony Snyders

Sign in / Sign up

Export Citation Format

Share Document