Chemical Vapor Deposition of Tin for Ulsi Applications

1996 ◽  
Vol 427 ◽  
Author(s):  
M. Eizenberg

AbstractTiN has been recognized as an excellent barrier material for W as well as Al planarization gap filling of contacts and vias. The need for conformality over extreme topography necessitates the use of CVD rather than sputtering for the deposition of TiN. In this paper we will first review the various deposition techniques of CVD TiN. Then, we will present a recently developed approach: thermal decomposition of TDMAT followed by nitrogen-based rf plasma treatments for resistivity reduction. This approach utilizes the advantages of thermal decomposition: excellent step coverage, good barrier properties, and low particle content. The resistivity reduction of the post deposition plasma treatment is followed by excellent stability upon long term air exposure. Vias and salicide contacts utilizing this unique process exhibit resistance values equivalent to those obtained when sputtered TiN is used. Conformal films as thin as 200Å can be utilized as excellent barriers for deep sub-0.5μm devices with large aspect ratios, where sputtered TiN can not be used any more.

2017 ◽  
Vol 8 ◽  
pp. 1250-1256 ◽  
Author(s):  
Meike Koenig ◽  
Joerg Lahann

In recent years much work has been conducted in order to create patterned and structured polymer coatings using vapor deposition techniques – not only via post-deposition treatment, but also directly during the deposition process. Two-dimensional and three-dimensional structures can be achieved via various vapor deposition strategies, for instance, using masks, exploiting surface properties that lead to spatially selective deposition, via the use of additional porogens or by employing oblique angle polymerization deposition. Here, we provide a concise review of these studies.


MRS Bulletin ◽  
1995 ◽  
Vol 20 (11) ◽  
pp. 38-41 ◽  
Author(s):  
M. Eizenberg

Titanium nitride (TiN) has been recognized as an excellent barrier material in various metallization structures of advanced microelectronic devices. TiN serves as a nucleation/glue layer as well as a barrier against WF6 attack in W plug filling. It serves as a diffusion barrier during or after high-temperature Al reflow processing for contact and via filling. TiN is considered as a diffusion-barrier material for Cu metallization as well. In addition, it is utilized as an antireflection coating layer, especially on top of Al, an application that will not be discussed in this article.TiN films must conform to the extreme topographies used in devices in order to guarantee void-free plug formation as well as Jow junction leakage. This should be achieved with the thinnest films possible in order to reduce interconnect stack thickness and to lower contact or via resistance. (The TiN resistivity is higher than that of the other components of the metallization—Ti, Al, or W.) In addition, the good barrier properties must be retained following various thermal cycles used in multilevel metallization. Finally, the metallization must be manufacturing-worthy, namely, it should be reliable and reproducible, it should have a very low particle content, and it should have a low cost of ownership.At present, TiN is mainly deposited by physical vapor deposition (PVD) via reactive sputtering. However, the poor conformality of sputtered TiN films over extreme topography limits the use of this deposition technique for deep sub-0.5 μm applications, especially those with features that have high aspect ratios.


2011 ◽  
Vol 295-297 ◽  
pp. 1600-1605
Author(s):  
Gai Mei Zhang ◽  
Qiang Chen ◽  
Cun Fu He ◽  
Shou Ye Zhang

The oxygen transmission rate (OTR) of SiOx coated polyethylene terephthalate (PET) and biaxially oriented polypropylene (BOPP) affected by fine defects is discussed in this paper. With an ultrasonic AFM (UAFM), which is an advantageous to distinguishing tiny defects on/ in the deposited films, it is found that the OTR of the coated films is relevant to the morphology scanned by UAFM. Herein SiOx layers with a thickness in the order of nano-scale were fabricated in 13.56 MHz-radio frequency (RF) -plasma-enhanced chemical vapor deposition (PECVD). The monomer for the coating fabrication is hexamethyldisiloxane (HMDSO). Fourier transform inferred (FTIR) spectra of the deposited coating with a strong peak at 1062 cm-1, corresponding to Si-O-Si stretching vibration, confirm the formation of SiOx coatings through PECVD. The higher OTR value of SiOx coated PET is consistence with defects on film surface and in the subsurface of coatings through UAFM. It obtains that the OTR value of the defect free SiOx coated film was reduced by ca. 89% compared with the defect existence SiOx coated PET.


Author(s):  
D.P. Malta ◽  
S.A. Willard ◽  
R.A. Rudder ◽  
G.C. Hudson ◽  
J.B. Posthill ◽  
...  

Semiconducting diamond films have the potential for use as a material in which to build active electronic devices capable of operating at high temperatures or in high radiation environments. A major goal of current device-related diamond research is to achieve a high quality epitaxial film on an inexpensive, readily available, non-native substrate. One step in the process of achieving this goal is understanding the nucleation and growth processes of diamond films on diamond substrates. Electron microscopy has already proven invaluable for assessing polycrystalline diamond films grown on nonnative surfaces.The quality of the grown diamond film depends on several factors, one of which is the quality of the diamond substrate. Substrates commercially available today have often been found to have scratched surfaces resulting from the polishing process (Fig. 1a). Electron beam-induced current (EBIC) imaging shows that electrically active sub-surface defects can be present to a large degree (Fig. 1c). Growth of homoepitaxial diamond films by rf plasma-enhanced chemical vapor deposition (PECVD) has been found to planarize the scratched substrate surface (Fig. 1b).


Author(s):  
N. J. Tighe ◽  
J. Sun ◽  
R.-M. Hu

Particles of BN,and C are added in amounts of 1 to 40% to SiC and Si3N4 ceramics in order to improve their mechanical properties. The ceramics are then processed by sintering, hot-pressing and chemical vapor deposition techniques to produce dense products. Crack deflection at the particles can increase toughness. However the high temperature strength and toughness are determined byphase interactions in the environmental conditions used for testing. Examination of the ceramics by transmission electron microscopy has shown that the carbon and boron nitride particles have a fibrous texture. In the sintered aSiC ceramic the carbon appears as graphite fiber bundles in the triple junctions and as compact graphite particles within some grains. Examples of these inclusions are shown in Fig. 1A and B.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 510
Author(s):  
Yongqiang Pan ◽  
Huan Liu ◽  
Zhuoman Wang ◽  
Jinmei Jia ◽  
Jijie Zhao

SiO2 thin films are deposited by radio frequency (RF) plasma-enhanced chemical vapor deposition (PECVD) technique using SiH4 and N2O as precursor gases. The stoichiometry of SiO2 thin films is determined by the X-ray photoelectron spectroscopy (XPS), and the optical constant n and k are obtained by using variable angle spectroscopic ellipsometer (VASE) in the spectral range 380–1600 nm. The refractive index and extinction coefficient of the deposited SiO2 thin films at 500 nm are 1.464 and 0.0069, respectively. The deposition rate of SiO2 thin films is controlled by changing the reaction pressure. The effects of deposition rate, film thickness, and microstructure size on the conformality of SiO2 thin films are studied. The conformality of SiO2 thin films increases from 0.68 to 0.91, with the increase of deposition rate of the SiO2 thin film from 20.84 to 41.92 nm/min. The conformality of SiO2 thin films decreases with the increase of film thickness, and the higher the step height, the smaller the conformality of SiO2 thin films.


2014 ◽  
Vol 32 ◽  
pp. 1460342
Author(s):  
Si Ci Ong ◽  
Usman Ilyas ◽  
Rajdeep Singh Rawat

Zinc oxide, ZnO , a popular semiconductor material with a wide band gap (3.37 eV) and high binding energy of the exciton (60 meV), has numerous applications such as in optoelectronics, chemical/biological sensors, and drug delivery. This project aims to (i) optimize the operating conditions for growth of ZnO nanostructures using the chemical vapor deposition (CVD) method, and (ii) investigate the effects of coupling radiofrequency (RF) plasma to the CVD method on the quality of ZnO nanostructures. First, ZnO nanowires were synthesized using a home-made reaction setup on gold-coated and non-coated Si (100) substrates at 950 °C. XRD, SEM, EDX, and PL measurements were used for characterizations and it was found that a deposition duration of 10 minutes produced the most well-defined ZnO nanowires. SEM analysis revealed that the nanowires had diameters ranging from 30-100 mm and lengths ranging from 1-4 µm. In addition, PL analysis showed strong UV emission at 380 nm, making it suitable for UV lasing. Next, RF plasma was introduced for 30 minutes. Both remote and in situ RF plasma produced less satisfactory ZnO nanostructures with poorer crystalline structure, surface morphology, and optical properties due to etching effect of energetic ions produced from plasma. However, a reduction in plasma discharge duration to 10 minutes produced thicker and shorter ZnO nanostructures. Based on experimentation conducted, it is insufficient to conclude that RF plasma cannot aid in producing well-defined ZnO nanostructures. It can be deduced that the etching effect of energetic ions outweighed the increased oxygen radical production in RF plasma nanofabrication.


1996 ◽  
Vol 424 ◽  
Author(s):  
Hong-Seok Choi ◽  
Jae-Hong Jun ◽  
Keun-Ho Jang ◽  
Min-Koo Han

AbstractThe material properties of laser-annealed a-Si:Nx films were investigated. The a-Si:Nx films for laser-annealing were deposited by rf plasma enhanced chemical vapor deposition (PECVD) with NH3 and SiH4 gas mixtures. At the 0.35 of NH3/SiH4 ratio, the optical band-gap was abruptly increased to 2.82 eV from 2.05 eV by laser-annealing which indicates that Si-N bonding comes to be notable at that ratio. The electrical conductivity showed the maximum value of 4× 10-6 S/cm at the 0.11 of NH3/SiH4 ratio where the grain growth and the increase of Si-N bonding are optimized for the enhancement of electrical conductivity. The σP/σD ratio which is related to the defects states for photo generation centers was decreased with increasing NH 3/SiH 4 ratio. Our experimental data showed that the optical band gap and electrical conductivity of laserannealed a-Si:Nx films were dominantly affected by the NH3/SiH4 ratio at the 250 mJ/cm2 of laser-annealing energy density.


Sign in / Sign up

Export Citation Format

Share Document