In-Situ Tem-Investigations of Electromigration Induced Mass Transport in “Near-Bamboo” Al-Interconnects

1997 ◽  
Vol 473 ◽  
Author(s):  
Dirk Heinen ◽  
Herbert Schroeder ◽  
Werner Schilling

ABSTRACTElectromigration(EM)-driven mass transport in “near-bamboo” Al-lines, which consist mostly of “blocking grains” is an important topic of research on ULSI-metallizations. Because the most easy diffusion path, i.e. grain boundaries parallel to the line, is suppressed in bamboo-like Al-lines other paths have to be considered. In this work two other possible paths of diffusion were examined by in-situ observations in a transmission electron microscope (TEM). For these experiments a special sample holder had to be constructed.One path is EM-driven intragranular diffusion in Al-lines. In this experiment, inert gas-filled voids with a mean diameter of about lOnm, so-called bubbles, which were created after gas implantation and annealing of the Al-lines, serve as indicators of mass (or vacancy) transport. The in-situ EM-tests reveal no intragranular void motion over a period of more than 100h at current densities of l-1.75MA/cm2 and temperatures of 150–225°C. This leads to an estimation of the maximum void diffusion velocity which was compared with calculated values of surface and volume diffusion controlled void motion, respectively. The second point of interest was the behavior of dislocations in Al-lines under an applied EM-force. The importance of their observed motion for intragranular mass transport will be discussed.

1994 ◽  
Vol 337 ◽  
Author(s):  
Z. Atzmon ◽  
R. Sharma ◽  
S. W. Russell ◽  
J.W. Mayer

ABSTRACTCo-deposited Cu-Cr and Cu-Ti thin films were heated at various temperatures in an ammonia ambient in an environmental cell placed into the column of a transmission electron microscope (TEM). The reaction dynamics were observed in situ and recorded on a videotape using a TV camera with 1/30 second time resolution. Nitridation of chromium and titanium was accompanied by the nucleation and growth of copper particles starting at 370 and 580°C, respectively. It was found that in the Cu-Ti system at a temperatures regime of 370-400°C the growth rate behaves under a parabolic law; namely, the process is controlled by diffusion of Cu through the nitride matrix. However, for the Cu-Cr system at temperatures of 610-630°C two growth regimes were observed. In the initial growth stages, the surface reaction is rate-limiting, while for longer nitridation times, growth is diffusion-controlled.


Author(s):  
John A. Sutliff

Near-eutectic Pb-Sn alloys are important solders used by the electronics industry. In these solders, the eutectic mixture, which solidifies last, is the important microstructural consituent. The orientation relation (OR) between the eutectic phases has previously been determined for directionally solidified (DS) eutectic alloys using x-ray diffraction or electron chanelling techniques. In the present investigation the microstructure of a conventionally cast, hyper-eutectic Pb-Sn alloy was examined by transmission electron microscopy (TEM) and the OR between the eutectic phases was determined by electron diffraction. Precipitates of Sn in Pb were also observed and the OR determined. The same OR was found in both the eutectic and precipitation reacted materials. While the precipitation of Sn in Pb was previously shown to occur by a discontinuous precipitation reaction,3 the present work confirms a recent finding that volume diffusion controlled precipitation can also occur.Samples that are representative of the solder's cast microstructure are difficult to prepare for TEM because the alloy is multiphase and the phases are soft.


Author(s):  
T. Marieb ◽  
J. C. Bravman ◽  
P. Flinn ◽  
D. Gardner ◽  
M. Madden

Electromigration and stress voiding have been active areas of research in the microelectronics industry for many years. While accelerated testing of these phenomena has been performed for the last 25 years[1-2], only recently has the introduction of high voltage scanning electron microscopy (HVSEM) made possible in situ testing of realistic, passivated, full thickness samples at high resolution.With a combination of in situ HVSEM and post-testing transmission electron microscopy (TEM) , electromigration void nucleation sites in both normal polycrystalline and near-bamboo pure Al were investigated. The effect of the microstructure of the lines on the void motion was also studied.The HVSEM used was a slightly modified JEOL 1200 EX II scanning TEM with a backscatter electron detector placed above the sample[3]. To observe electromigration in situ the sample was heated and the line had current supplied to it to accelerate the voiding process. After testing lines were prepared for TEM by employing the plan-view wedge technique [6].


Author(s):  
F. M. Ross ◽  
R. Hull ◽  
D. Bahnck ◽  
J. C. Bean ◽  
L. J. Peticolas ◽  
...  

We describe an investigation of the electrical properties of interfacial dislocations in strained layer heterostructures. We have been measuring both the structural and electrical characteristics of strained layer p-n junction diodes simultaneously in a transmission electron microscope, enabling us to correlate changes in the electrical characteristics of a device with the formation of dislocations.The presence of dislocations within an electronic device is known to degrade the device performance. This degradation is of increasing significance in the design and processing of novel strained layer devices which may require layer thicknesses above the critical thickness (hc), where it is energetically favourable for the layers to relax by the formation of misfit dislocations at the strained interfaces. In order to quantify how device performance is affected when relaxation occurs we have therefore been investigating the electrical properties of dislocations at the p-n junction in Si/GeSi diodes.


Author(s):  
Tai D. Nguyen ◽  
Ronald Gronsky ◽  
Jeffrey B. Kortright

Nanometer period Ru/C multilayers are one of the prime candidates for normal incident reflecting mirrors at wavelengths < 10 nm. Superior performance, which requires uniform layers and smooth interfaces, and high stability of the layered structure under thermal loadings are some of the demands in practical applications. Previous studies however show that the Ru layers in the 2 nm period Ru/C multilayer agglomerate upon moderate annealing, and the layered structure is no longer retained. This agglomeration and crystallization of the Ru layers upon annealing to form almost spherical crystallites is a result of the reduction of surface or interfacial energy from die amorphous high energy non-equilibrium state of the as-prepared sample dirough diffusive arrangements of the atoms. Proposed models for mechanism of thin film agglomeration include one analogous to Rayleigh instability, and grain boundary grooving in polycrystalline films. These models however are not necessarily appropriate to explain for the agglomeration in the sub-nanometer amorphous Ru layers in Ru/C multilayers. The Ru-C phase diagram shows a wide miscible gap, which indicates the preference of phase separation between these two materials and provides an additional driving force for agglomeration. In this paper, we study the evolution of the microstructures and layered structure via in-situ Transmission Electron Microscopy (TEM), and attempt to determine the order of occurence of agglomeration and crystallization in the Ru layers by observing the diffraction patterns.


Author(s):  
S. Hagège ◽  
U. Dahmen ◽  
E. Johnson ◽  
A. Johansen ◽  
V.S. Tuboltsev

Small particles of a low-melting phase embedded in a solid matrix with a higher melting point offer the possibility of studying the mechanisms of melting and solidification directly by in-situ observation in a transmission electron microscope. Previous studies of Pb, Cd and other low-melting inclusions embedded in an Al matrix have shown well-defined orientation relationships, strongly faceted shapes, and an unusual size-dependent superheating before melting.[e.g. 1,2].In the present study we have examined the shapes and thermal behavior of eutectic Pb-Cd inclusions in Al. Pb and Cd form a simple eutectic system with each other, but both elements are insoluble in solid Al. Ternary alloys of Al (Pb,Cd) were prepared from high purity elements by melt spinning or by sequential ion implantation of the two alloying additions to achieve a total alloying addition of up to lat%. TEM observations were made using a heating stage in a 200kV electron microscope equipped with a video system for recording dynamic behavior.


Author(s):  
M. Park ◽  
S.J. Krause ◽  
S.R. Wilson

Cu alloying in Al interconnection lines on semiconductor chips improves their resistance to electromigration and hillock growth. Excess Cu in Al can result in the formation of Cu-rich Al2Cu (θ) precipitates. These precipitates can significantly increase corrosion susceptibility due to the galvanic action between the θ-phase and the adjacent Cu-depleted matrix. The size and distribution of the θ-phase are also closely related to the film susceptibility to electromigration voiding. Thus, an important issue is the precipitation phenomena which occur during thermal device processing steps. In bulk alloys, it was found that the θ precipitates can grow via the grain boundary “collector plate mechanism” at rates far greater than allowed by volume diffusion. In a thin film, however, one might expect that the growth rate of a θ precipitate might be altered by interfacial diffusion. In this work, we report on the growth (lengthening) kinetics of the θ-phase in Al-Cu thin films as examined by in-situ isothermal aging in transmission electron microscopy (TEM).


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3727
Author(s):  
Huanhuan He ◽  
Zhiwei Lin ◽  
Shengming Jiang ◽  
Xiaotian Hu ◽  
Jian Zhang ◽  
...  

The FeCoNiCrTi0.2 high-entropy alloys fabricated by vacuum arc melting method, and the annealed pristine material, are face centered cubic structures with coherent γ’ precipitation. Samples were irradiated with 50 keV He+ ions to a fluence of 2 × 1016 ions/cm2 at 723 K, and an in situ annealing experiment was carried out to monitor the evolution of helium bubbles during heating to 823 and 923 K. The pristine structure of FeCoNiCrTi0.2 samples and the evolution of helium bubbles during in situ annealing were both characterized by transmission electron microscopy. The annealing temperature and annealing time affect the process of helium bubbles evolution and formation. Meanwhile, the grain boundaries act as sinks to accumulate helium bubbles. However, the precipitation phase seems have few effects on the helium bubble evolution, which may be due to the coherent interface and same structure of γ’ precipitation and matrix.


1998 ◽  
Vol 554 ◽  
Author(s):  
J. A. Horton ◽  
J. L. Wright ◽  
J. H. Schneibel

AbstractThe fracture behavior of a Zr-based bulk amorphous alloy, Zr-10 Al-5 Ti-17.9 Cu-14.6Ni (at.%), was examined by transmission electron microscopy (TEM) and x-ray diffraction forany evidence of crystallization preceding crack propagation. No evidence for crystallizationwas found in shear bands in compression specimens or at the fracture surface in tensile specimens.In- situ TEM deformation experiments were performed to more closely examine actualcrack tip regions. During the in-situ deformation experiment, controlled crack growth occurredto the point where the specimen was approximately 20 μm thick at which point uncontrolledcrack growth occurred. No evidence of any crystallization was found at the crack tips or thecrack flanks. Subsequent scanning microscope examination showed that the uncontrolledcrack growth region exhibited ridges and veins that appeared to have resulted from melting. Performing the deformations, both bulk and in-situ TEM, at liquid nitrogen temperatures (LN2) resulted in an increase in the amount of controlled crack growth. The surface roughness of the bulk regions fractured at LN2 temperatures corresponded with the roughness of the crack propagation observed during the in-situ TEM experiment, suggesting that the smooth-appearing room temperature fracture surfaces may also be a result of localized melting.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2229 ◽  
Author(s):  
Flora Somidin ◽  
Hiroshi Maeno ◽  
Xuan Tran ◽  
Stuart D. McDonald ◽  
Mohd Mohd Salleh ◽  
...  

In-situ observations of the polymorphic transformation in a single targeted Cu6Sn5 grain constrained between Sn-0.7 wt % Cu solder and Cu-Cu3Sn phases and the associated structural evolution during a solid-state thermal cycle were achieved via a high-voltage transmission electron microscope (HV-TEM) technique. Here, we show that the monoclinic η′-Cu6Sn5 superlattice reflections appear in the hexagonal η-Cu6Sn5 diffraction pattern upon cooling to isothermal 140 °C from 210 °C. The in-situ real space imaging shows that the η′-Cu6Sn5 contrast pattern is initiated at the grain boundary. This method demonstrates a new approach for further understanding the polymorphic transformation behavior on a real solder joint.


Sign in / Sign up

Export Citation Format

Share Document