Epitaxial Growth and Properties of Mg-Doped Gan Film Produced by Atmospheric Mocvd System With Three Layered Lammar Flow Gas Injection

1997 ◽  
Vol 482 ◽  
Author(s):  
N. Akutsu ◽  
H. Tokunaga ◽  
I. Waki ◽  
A. Yamaguchi ◽  
K. Matsumoto

AbstractMg-doped GaN films with a variety of Mg concentrations were grown on sapphire (0001) by horizontal atmospheric metalorganic chemical vapor deposition (MOCVD) system with three layered laminar flow gas injection in an attempt to study the Mg doping effects on film quality. The increase of Mg concentration induced an increase of x-ray rocking curve full width at half maximum (FWHM) and degradation of surface morphology. Secondary ion mass spectroscopy (SIMS) analysis shows increase of Si and O, associated with Mg-doping concentration. Si and O concentrations of Mg-doped film are up to 5×1016cm−3 and 5×1017cm−3 at Mg concentration of 4.5×1019cm−3, respectively. Strong 380nm emission and weak 430nm emission were observed by photoluminescence (PL) measurement at room temperature for as-grown Mg-doped GaN films which shows p-type conductivity after thermal annealing. While, in highliy Mg-doped GaN films which do not show the p-type conduction after thermal annealing, 430nm and/or 450nm emission were dominating. The highest room temperature free hole concentration achieved was p=2.5× 1018cm−3 with mobility μp=l.9cm2/V s.

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5339
Author(s):  
Lian Zhang ◽  
Rong Wang ◽  
Zhe Liu ◽  
Zhe Cheng ◽  
Xiaodong Tong ◽  
...  

This work studied the regulation of hole concentration and mobility in p-InGaN layers grown by metalorganic chemical vapor deposition (MOCVD) under an N-rich environment. By adjusting the growth temperature, the hole concentration can be controlled between 6 × 1017/cm3 and 3 × 1019/cm3 with adjustable hole mobility from 3 to 16 cm2/V.s. These p-InGaN layers can meet different requirements of devices for hole concentration and mobility. First-principles defect calculations indicate that the p-type doping of InGaN at the N-rich limiting condition mainly originated from Mg substituting In (MgIn). In contrast with the compensation of nitrogen vacancy in p-type InGaN grown in a Ga-rich environment, the holes in p-type InGaN grown in an N-rich environment were mainly compensated by interstitial Mg (Mgi), which has very low formation energy.


1995 ◽  
Vol 415 ◽  
Author(s):  
Baolin Zhang ◽  
Yixin Jin ◽  
Tianming Zhou ◽  
Hong Jiang ◽  
Yongqiang Ning ◽  
...  

ABSTRACTGaInAsSb/GaSb heterostructures have been grown by metalorganic chemical vapor deposition (MOCVD). The optical properties were characterized using low temperature(71K) photoluminescence(PL) and infrared transmission spectroscopy. The FWHM of the typical PL spectrum peaked at 2.3μm is 30meV. Hall measurement results for undoped GaInAsSb layers are presented showing a p-type background and low hole concentration of 6.5 × 1015cm−3. The room temperature performances of the p-GaInAsSb/n-GaSb photodiodes are reported. Its responsivity spectrum is peaked at 2.2 5μm and cuts off at 1.7μm in the short wavelength and at 2.4μm in the long wavelength, respectively. The room temperature detectivity D* is of 1 × 109cm.Hz1/2.W−2


2009 ◽  
Vol 1198 ◽  
Author(s):  
Neeraj Nepal ◽  
M. Oliver Luen ◽  
Pavel Frajtag ◽  
John Zavada ◽  
Salah M. Bedair ◽  
...  

AbstractWe report on metal organic chemical vapor deposition growth of GaMnN/p-GaN/n-GaN multilayer structures and manipulation of room temperature (RT) ferromagnetism (FM) in a GaMnN layer. The GaMnN layer was grown on top of a n-GaN substrate and found to be almost always paramagnetic. However, when grown on a p-type GaN layer, a strong saturation magnetization (Ms) was observed. Ms was almost doubled after annealing demonstrating that the FM observed in GaMnN film is carrier-mediated. To control the hole concentration of the p-GaN layer by depletion, GaMnN/p-GaN/n-GaN multilayer structures of different p-GaN thickness (Xp) were grown on sapphire substrates. We have demonstrated that the FM depends on the Xp and the applied bias to the GaN p-n junction. The FM of these multilayer is independent on the top GaMnN layer thickness (tGaMnN) for tGaMnN >200 nm and decreases for tGaMnN < 200 nm. Thus the room temperature FM of GaMnN i-p-n structure can also be controlled by changing Xp and tGaMnN in the GaMnN i-p-n structures.


1993 ◽  
Vol 325 ◽  
Author(s):  
M. S. Brandt ◽  
N. M. Johnson ◽  
R. J. Molnar ◽  
R. Singh ◽  
T. D. Moustakas

AbstractA comparative study of the effects of hydrogen in n-type (unintentionally and Si-doped) as well as p-type (Mg-doped) MBE-grown GaN is presented. Hydrogenation above 500°C reduces the hole concentration at room temperature in the p-type material by one order of magnitude. Three different microscopic effects of hydrogen are suggested: Passivation of deep defects and of Mg-acceptors due to formation of hydrogen-related complexes and the introduction of a hydrogenrelated donor state 100 meV below the conduction band edge.


1999 ◽  
Vol 595 ◽  
Author(s):  
S. J. Chung ◽  
O. H. Cha ◽  
H. K. Cho ◽  
M. S. Jeong ◽  
C-H. Hong ◽  
...  

AbstractThe defect levels associated with Mg impurity in p-type GaN films were systematically investigated in terms of doping concentration by photocurrent spectroscopy. Mg-doped GaN samples were grown on sapphire substrate by metal organic chemical vapor deposition and annealed in nitrogen atmosphere at 850 for 10 minutes. At room temperature, PC spectra showed two peaks at 3.31 and 3.15 eV associated with acceptor levels formed at 300 and 142 meV above valence band in as grown samples. But, after the thermal annealing, PC spectra exhibited various additional peaks depending on the Mg concentration. In the GaN samples with Mg concentration around 6 7 1017 cm−3, we have observed PC peaks related to Mg at 3.31 as well as 3.02 eV and carbon acceptor at 3.17 eV. For moderately Mg doped GaN samples, i.e., the hole concentration p=3 4 1017 cm−3, additional peak was observed at around 0.9 eV which can be attributed to defects related to Ga vacancy. For relatively low Mg doped samples whose hole concentrations are 1 2 1017 cm−3, additional broad peak was observed at around 1.3 eV. This peak may be related to the yellow band luminescence. As the Mg concentration is increased, the concentration of Ga vacancies can be reduced because Mg occupies the substitutional site of Ga in GaN lattice. When the hole concentration is above 6 7 1017 cm−3, the yellow luminescence and Ga vacancy related peaks disappeared completely.


2017 ◽  
Vol 8 ◽  
pp. 2126-2138 ◽  
Author(s):  
Perumal Kannappan ◽  
Nabiha Ben Sedrine ◽  
Jennifer P Teixeira ◽  
Maria R Soares ◽  
Bruno P Falcão ◽  
...  

Mg doping of GaAs nanowires has been established as a viable alternative to Be doping in order to achieve p-type electrical conductivity. Although reports on the optical properties are available, few reports exist about the physical properties of intermediate-to-high Mg doping in GaAs nanowires grown by molecular beam epitaxy (MBE) on GaAs(111)B and Si(111) substrates. In this work, we address this topic and present further understanding on the fundamental aspects. As the Mg doping was increased, structural and optical investigations revealed: i) a lower influence of the polytypic nature of the GaAs nanowires on their electronic structure; ii) a considerable reduction of the density of vertical nanowires, which is almost null for growth on Si(111); iii) the occurrence of a higher WZ phase fraction, in particular for growth on Si(111); iv) an increase of the activation energy to release the less bound carrier in the radiative state from nanowires grown on GaAs(111)B; and v) a higher influence of defects on the activation of nonradiative de-excitation channels in the case of nanowires only grown on Si(111). Back-gate field effect transistors were fabricated with individual nanowires and the p-type electrical conductivity was measured with free hole concentration ranging from 2.7 × 1016 cm−3 to 1.4 × 1017 cm−3. The estimated electrical mobility was in the range ≈0.3–39 cm2 /Vs and the dominant scattering mechanism is ascribed to the WZ/ZB interfaces. Electrical and optical measurements showed a lower influence of the polytypic structure of the nanowires on their electronic structure. The involvement of Mg in one of the radiative transitions observed for growth on the Si(111) substrate is suggested.


2000 ◽  
Vol 5 (S1) ◽  
pp. 329-335
Author(s):  
I. D. Goepfert ◽  
E. F. Schubert ◽  
A. Osinsky ◽  
P. E. Norris

Mg-doped superlattices consisting of uniformly doped AlxGa1−xN and GaN layers are analyzed by Hall-effect measurements. Acceptor activation energies of 70 meV and 58 meV are obtained for superlattice structures with an Al mole fraction of x = 0.10 and 0.20 in the barrier layers, respectively. These energies are significantly lower than the activation energy measured for Mg-doped GaN thin films. At room temperature, the doped superlattices have free hole concentrations of 2 × 1018 cm−3 and 4 × 1018 cm−3 for x = 0.10 and 0.20, respectively. The increase in hole concentration with Al content of the superlattice is consistent with theory. The room temperature conductivity measured for the superlattice structures are 0.27 S/cm and 0.64 S/cm for an Al mole fraction of x = 0.10 and 0.20, respectively.


2006 ◽  
Vol 20 (25n27) ◽  
pp. 4034-4039
Author(s):  
LIPING ZHU ◽  
ZHIZHEN YE ◽  
XIANFENG NI ◽  
ZHE ZHAO ◽  
BINGHUI ZHAO

Mg -doped GaN films have been successfully prepared on Si (111) substrate by metal-organic chemical vapor deposition (MOCVD). Upon rapid thermal annealing (RTA) treatment, the films showed p-type conductivity with a carrier density of 7.84 cm-3, a mobility of 5.54 cm2V-1s-1, and a resistivity of about 0.144 Ωcm, which were much better than that of the films without rapid thermal annealing (RTA) treatment. It was found that the surface morphology and crystal quality of the obtained p-type GaN films were greatly improved by RTA treatment, while the residual stress and dislocations in these films were decreased.


1999 ◽  
Vol 595 ◽  
Author(s):  
I. D. Goepfert ◽  
E. F. Schubert ◽  
A. Osinsky ◽  
P. E. Norris

AbstractMg-doped superlattices consisting of uniformly doped AlxGa1−xN and GaN layers are analyzed by Hall-effect measurements. Acceptor activation energies of 70 meV and 58 meV are obtained for superlattice structures with an Al mole fraction of x = 0.10 and 0.20 in the barrier layers, respectively. These energies are significantly lower than the activation energy measured for Mg-doped GaN thin films. At room temperature, the doped superlattices have free hole concentrations of 2 × 1018 cm−3 and 4 × 1018 cm−3 for x = 0.10 and 0.20, respectively. The increase in hole concentration with Al content of the superlattice is consistent with theory. The room temperature conductivity measured for the superlattice structures are 0.27 S/cm and 0.64 S/cm for an Al mole fraction of x = 0.10 and 0.20, respectively.


1996 ◽  
Vol 450 ◽  
Author(s):  
C. A. Wang ◽  
G. W. Turner ◽  
M. J. Manfra ◽  
H. K. Choi ◽  
D. L. Spears

ABSTRACTGai1−xInxASySb1-y (0.06 < x < 0.18, 0.05 < y < 0.14) epilayers were grown lattice-matched to GaSb substrates by low-pressure organometallic vapor phase epitaxy (OMVPE) using triethylgallium, trimethylindium, tertiarybutylarsine, and trimethylantimony. These epilayers have a mirror-like surface morphology, and exhibit room temperature photoluminescence (PL) with peak emission wavelengths (λP,300K) out to 2.4 μm. 4K PL spectra have a full width at half-maximum of 11 meV or less for λP,4K < 2.1 μm (λP,300K = 2.3 μm). Nominally undoped layers are p-type with typical 300K hole concentration of 9 × 1015 cm−3 and mobility ∼ 450 to 580 cm2/V-s for layers grown at 575°C. Doping studies are reported for the first time for GalnAsSb layers doped n type with diethyltellurium and p type with dimethylzinc. Test diodes of p-GalnAsSb/n-GaSb have an ideality factor that ranges from 1.1 to 1.3. A comparison of electrical, optical, and structural properties of epilayers grown by molecular beam epitaxy indicates OMVPE-grown layers are of comparable quality.


Sign in / Sign up

Export Citation Format

Share Document