Thermal Reliability of Pt/Ti/Pt/Au Schottky Contact on InP with a GalnP Schottky Barrier Enhancement Layer

1998 ◽  
Vol 535 ◽  
Author(s):  
H. C. Kuo ◽  
C. H. Lin ◽  
B. G. Moser ◽  
H. Hsia ◽  
Z. Tang ◽  
...  

AbstractWe present the studies of the thermal stability of various metal including Au, Ti, Pt, Pd and Pt/Ti/Pt/Au Schottky contacts on strained Ga0.2In0.8P/InP semiconductors. Auger electron spectroscopy (AES) analysis and cross-sectional TEM of the thermally annealed Schottky diode were performed to investigate the failure mechanism. For Pt/Ti/Pt/Au schottky contacts on strained GalnP/InP, no significant change was found for samples annealed up to 350°C. However, a drastic degradation of the barrier height and the ideality factor was observed in samples annealed at 400°C, which may be caused by the interdiffusion and penetration of metals into the semiconductor. Finally InGaAs/InP doped channel heterojunction FET's (DC-HFET's) with a GaInP Schottky barrier enhancement layer (SBEL) were grown and fabricated. The 0.25 μm gate-length devices showed excellent DC and RF performance, with anfi of 117 GHz and an fmax of 168 GHz.

Author(s):  
Yih-Cheng Shih ◽  
E. L. Wilkie

Tungsten silicides (WSix) have been successfully used as the gate materials in self-aligned GaAs metal-semiconductor-field- effect transistors (MESFET). Thermal stability of the WSix/GaAs Schottky contact is of major concern since the n+ implanted source/drain regions must be annealed at high temperatures (∼ 800°C). WSi0.6 was considered the best composition to achieve good device performance due to its low stress and excellent thermal stability of the WSix/GaAs interface. The film adhesion and the uniformity in barrier heights and ideality factors of the WSi0.6 films have been improved by depositing a thin layer of pure W as the first layer on GaAs prior to WSi0.6 deposition. Recently WSi0.1 has been used successfully as the gate material in 1x10 μm GaAs FET's on the GaAs substrates which were sputter-cleaned prior to deposition. These GaAs FET's exhibited uniform threshold voltages across a 51 mm wafer with good film adhesion after annealing at 800°C for 10 min.


2002 ◽  
Vol 716 ◽  
Author(s):  
You-Seok Suh ◽  
Greg Heuss ◽  
Jae-Hoon Lee ◽  
Veena Misra

AbstractIn this work, we report the effects of nitrogen on electrical and structural properties in TaSixNy /SiO2/p-Si MOS capacitors. TaSixNy films with various compositions were deposited by reactive sputtering of TaSi2 or by co-sputtering of Ta and Si targets in argon and nitrogen ambient. TaSixNy films were characterized by Rutherford backscattering spectroscopy and Auger electron spectroscopy. It was found that the workfunction of TaSixNy (Si>Ta) with varying N contents ranges from 4.2 to 4.3 eV. Cross-sectional transmission electron microscopy shows no indication of interfacial reaction or crystallization in TaSixNy on SiO2, resulting in no significant increase of leakage current in the capacitor during annealing. It is believed that nitrogen retards reaction rates and improves the chemical-thermal stability of the gate-dielectric interface and oxygen diffusion barrier properties.


2014 ◽  
Vol 778-780 ◽  
pp. 1142-1145 ◽  
Author(s):  
Filippo Giannazzo ◽  
Stefan Hertel ◽  
Andreas Albert ◽  
Antonino La Magna ◽  
Fabrizio Roccaforte ◽  
...  

Epitaxial graphene fabricated by thermal decomposition of the Si-face of silicon carbide (SiC) forms a defined interface to the SiC substrate. As-grown monolayer graphene with buffer layer establishes an ohmic interface even to low-doped (e. g. [N] ≈ 1015 cm-3) SiC, and a specific contact resistance as low as ρC = 5.9×10-6 Ωcm2 can be achieved on highly n-doped SiC layers. After hydrogen intercalation of monolayer graphene, the so-called quasi-freestanding graphene forms a Schottky contact to n-type SiC with a Schottky barrier height of 1.5 eV as determined from C-V analysis and core level photoelectron spectroscopy (XPS). This value, however, strongly deviates from the respective value of less than 1 eV determined from I-V measurements. It was found from conductive atomic force microscopy (C-AFM) that the Schottky barrier is locally lowered on other crystal facets located at substrate step edges. For very small Schottky contacts, the barrier height extracted from I-V curves approaches the value of 1.5 eV from C-V and XPS.


1993 ◽  
Vol 300 ◽  
Author(s):  
Edward Y. Chang ◽  
Yeong-Lin Lai ◽  
Kuen-Chyuan Lin ◽  
Chun-Yen Chang ◽  
F. Y. Juang

ABSTRACTThe first study of the TiW nitrides (TiWNx) as the Schottky contact metals to the n type Ga0.51In0 49P has been made. The Ga0.51 In0.49P epitaxial layer was successfully grown on the GaAs substrate by LP-MOCVD to form a lattice-matched heterostructure. The RF-magnetron sputtering system was utilized for the nitride deposition. The thermal stability of the nitride films were studied using rapid thermal annealing (RTA) method. Both the electrical characteristics and the materials characteristics were investigated. The materials properties of the nitride films were characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), and Auger electron spectroscopy (AES). The TiWNx Schottky contacts demonstrate excellent electrical and physical characteristics, even after high temperature annealing. The barrier heights range from 0.81 to 1.05 eV depending on the content of the nitrogen and the annealing conditions. The XRD and AES results show no indication of interaction at the TiWNX/GaInP interface of both as-deposited and annealed samples. The outstanding characteristics of the contact were attributed to the high bandgap nature of the Ga0.51In0.49P and the incorporation of nitrogen into the TiW films.


2006 ◽  
Vol 527-529 ◽  
pp. 927-930 ◽  
Author(s):  
Tomonori Nakamura ◽  
Toshiyuki Miyanagi ◽  
Isaho Kamata ◽  
Hidekazu Tsuchida

We compared the electrical characteristics of 4H-SiC(0001) and (000-1) Schottky barrier diodes (SBDs), and derived the Schottky barrier heights (Hbs) of Ta, W, Mo, and Pd on {0001}. We investigated the annealing temperature dependence of Hbs in Mo and the W Schottky contacts for (0001) and (000-1). The Hbs are increased by annealing, except for the W Schottky contact on (0001). The yields of 0.25 cm2 as-deposited Mo-SBDs were 93.3% for (0001) and 71.1% for (000-1), respectively. We also demonstrated over 1 cm2 (0001) as-deposited Mo-SBD with a low leakage current, an excellent ideality factor, and no excess current, encouraging the enlargement of the active area in the SBD.


2000 ◽  
Vol 5 (S1) ◽  
pp. 915-921
Author(s):  
J. Dumont ◽  
R. Caudano ◽  
R. Sporken ◽  
E. Monroy ◽  
E. Muñoz ◽  
...  

Au/GaN and Cu/GaN Schottky contacts have been studied using X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). Clean and stoechiometric GaN samples were obtained using in situ hydrogen plasma treatment and Ga deposition. The growth of Cu and Au follows Stranski-Krastanov and Frank van der Merwe modes respectively. The interfaces are sharp and non-reactive. Schottky barriers of 1.15eV for Au/GaN and 0.85eV for Cu/GaN were measured using XPS.


1989 ◽  
Vol 146 ◽  
Author(s):  
E.J. Yun ◽  
H.G. Chun ◽  
K. Jung ◽  
D.L. Kwong ◽  
S. Lee

ABSTRACTIn this paper, the interactions of sputter-deposited Ti on SiO2 substrates during rapid thermal annealing in nitrogen at 550°C - 900°C for 10 - 60 s have been systematically studied using X-ray diffraction, Auger electron spectroscopy, transmission electron diffraction, TEM & cross-sectional TEM, and sheet resistance measurements.


Sign in / Sign up

Export Citation Format

Share Document